

Zanha africana (Radlk.) Exell: review of its botany, medicinal uses and biological activities

Alfred Maroyi

Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa

Abstract

Zanha africana is a medium-sized tree widely used as herbal medicine throughout its distributional range in east, central and southern Africa. This study was aimed at providing a critical review of the botany, medicinal uses and biological activities of *Z. africana*. Documented information on the botany, biological activities and medicinal uses of *Z. africana* was collected from several online sources which included BMC, Scopus, SciFinder, Google Scholar, Science Direct, Elsevier, Pubmed and Web of Science. Additional information on the botany, biological activities and medicinal uses of *Z. africana* was gathered from pre-electronic sources such as book chapters, books, journal articles and scientific publications sourced from the University library. This study showed that the bark, leaves, rootbark and roots of *Z. africana* are mainly used as herbal medicine for body pains, convulsions, epilepsy, reproductive problems, fever, malaria, gastro-intestinal problems, headache, migraine, heart and hypertension problems, painful legs, rheumatoid arthritis, rheumatism and respiratory problems. Pharmacological research revealed that *Z. africana* extracts, cyclitols and saponins isolated from the species have antibacterial, antifungal, antiviral, antidiabetic, anti-inflammatory, insecticidal, anti-trypanosomal and cytotoxicity activities. *Zanha africana* should be subjected to detailed phytochemical, pharmacological activities of the species.

Keywords: Ethnopharmacology, herbal medicine, indigenous pharmacopeia, Sapindaceae, Zanha africana

INTRODUCTION

Zanha africana (Radlk.) Exell is a medium-sized tree belonging to the Sapindaceae family. Zanha africana is a multipurpose tree species used as a source of edible fruits, timber for construction, household furniture, agricultural implements and also widely collected as firewood and herbal medicine.¹ The fruits of Z. africana are eaten by humans in Mozambique,² Tanzania^{3,4} and throughout the distributional range of the species in east, central and southern Africa and said to have a pleasant taste comparable to the taste of appricot, Prunus armeniaca L. (family Rosaceae).¹ Seeds of Z. africana contain 10.5% acid saponin⁵ and are generally believed to be poisonous if swallowed, and fruits are reported to cause severe diarrhoea if eaten in large quantities¹. Research by Dery et al.⁶ and Rao et al.⁷ showed that Z. africana is among the 10 priority medicinal plants in Shiyanga region of Tanzania and recommended domestication of the species in home gardens in the country. Similarly, research by Nahashon^{$\hat{8}$} showed that Z. africana is widely used as herbal medicine in Tanzania and in need of conservation. Research by Muzila et al.⁹ showed that Z. africana is now rare in Machakos district in Kenya due to overexploitation as herbal medicine. In Malawi, Bundschuh et al.¹⁰ argued that Z. africana is increasingly becoming scarce in Karonga district and other regions of the country. The bark, roots and stems of Z. africana are sold as herbal medicines in informal herbal medicine markets in Malawi^{11,12} and Tanzania.¹³⁻¹⁵ It is within this context that the current study was undertaken aimed at reviewing the botany, medicinal uses and biological activities of Z. africana.

Botanical profile of Zanha africana

The name Zanha is probably in honour of Karl Hermann Zahn (1865 - 1940), a German plant collector and botany

professor¹⁶ and the specific name africana means from Africa. The synonym of Z. africana is Dialiopsis africana Radik. and the English common name of the species is velvet-fruited zanha.⁵ The genus Zanha comprises three species, namely Z. golungensis Hiern., whose distribution overlaps with that of A. africana and Z. suaveolens Capuron, a small tree species that is endemic to Madagascar.¹ Zanha africana is a deciduous dioecious shrub or small tree growing to a height of 17 metres.^{1,5} The bole is cylindrical, branchless, sometimes crooked with reddish to dark brown bark, which usually flakes off revealing an orange to reddish inner bark. The leaves are alternate, paripinnately compound, ovate to elliptic in shape with reddish brown short-hairs. The inflorescence is a terminal or axillary panicle with a dense cluster of small and inconspicuous flowers that are regular, unisexual, sweet-scented and greenish in colour. The fruits are ellipsoid fleshy drupe with velvet hairs that are yellow to bright orange in colour. The species has been recorded in Angola, Botswana, Kenya, Malawi, Mozambique, Namibia, Tanzania, Zambia and Zimbabwe.^{1,5,17} Zanha africana has been recorded in open woodland, often among rocks and on koppies or ridges, sometimes in riverine forest at an altitude ranging from 600 m to 1550 m above sea level.^{1,5}

Medicinal uses of Zanha africana

The bark, leaves, rootbark and roots of *Z. africana* are mainly used as herbal medicines for body pains, convulsions, epilepsy, reproductive problems, fever, malaria, gastro-intestinal problems, headache, migraine, heart and hypertension problems, painful legs, rheumatoid arthritis, rheumatism and respiratory problems (Table 1, Figure 1). Other medicinal applications recorded in a single country but supported by at least two literature records include use of rootbark and roots against fungal

infections, oral and vaginal candidiasis,^{3,18-20} helminthiasis and intestinal worms,^{3,19} use of roots against hernia^{3,19,21} and skin problems,^{9,22,23} use of bark, leaves and roots for

mental illness^{3,6,7,24} and use of rootbark as an insecticide^{25- 28} (Table 1).

	Table 1:	Medicinal uses of Zanha a	fricana		
Medicinal use	Parts used	Country	References		
Body pains	Roots	Kenya and Zimbabwe	Wanzala et al. ²³ ; Gelfand et al. ²⁹		
Convulsions and epilepsy	Bark, leaves, rootbark and roots	Malawi and Tanzania	Ruffo et al. ³ ; Dery et al. ⁶ ; Rao et al. ⁷ ; Chhabra et al. ¹⁸ ; Chhabra et al. ¹⁹ ; Augustino and Gillah ²¹ ; Mathias ²⁴ ; Kokwaro ³⁰ ; Morris ³¹ ; Kitula ³² ; Augustino et al. ³³ ; Iancu ³⁴		
Dizziness	Roots	Zimbabwe	Gelfand et al. ²⁹		
Elephantiasis	Bark and roots	Tanzania	Augustino et al. ³³		
Female reproductive problems (abortion, dysmenorrhoea, facilitating childbirth, infertility, menorrhagia, pregnancy edema and disorders)	Bark, rootbark and roots	Kenya, Malawi, Tanzania and Zimbabwe	Ruffo et al. ³ ; Muzila et al. ⁹ ; Hilonga et al. ¹⁵ ; Chhabra et al. ¹⁸ ; Chhabra et al. ¹⁹ ; Augustino and Gillah ²¹ ; Wanzala et al. ²³ ; Gelfand et al. ²⁹ ; Kokwaro ³⁰ ; Morris ³¹ ; Kaingu et al. ³⁵		
Fever, typhoid fever and malaria	Bark, leaves and roots	Kenya, Malawi, Tanzania and Zimbabwe	Ruffo et al. ³ ; Muzila et al. ⁹ ; Augustino and Gillah ²¹ ; Wanzala et al. ²³ ; Gelfand et al. ²⁹ ; Lukwa et al. ³⁶ ; Fowler ³⁷ ; Chinsembu ³⁸ ; Waiganjo et al. ³⁹		
Fungal infections, oral and vaginal candidiasis	Rootbark and roots	Tanzania	Ruffo et al. ³ ; Chhabra et al. ¹⁸ ; Chhabra et al. ¹⁹ ; Runyoro et al. ²⁰		
Gastro-intestinal problems (abdominal pains, constipation, diarrhoea, dysentery and stomachache)	Bark, leaves, rootbark and roots	Kenya, Mozambique, Tanzania and Zimbabwe	Ruffo et al. ³ ; Dery et al. ⁶ ; Rao et al. ⁷ ; Muzila et al. ⁹ ; Chhabra et al. ¹⁸ ; Chhabra et al. ¹⁹ ; Augustino and Gillah ²¹ ; Wanzala et al. ²³ ; Gelfand et al. ²⁹ ; Kokwaro ³⁰ ; Kitula ³² ; Augustino et al. ³³ ; Kapundu et al. ⁴⁰ ; Stark et al. ⁴¹		
Haematuria	Roots	Kenya	Wanzala et al. ²³		
Haemorrhoids	Roots	Malawi	Morris ³¹		
Hernia	Roots	Tanzania	Ruffo et al. ³ ; Chhabra et al. ¹⁹ ; Augustino and Gillah ²¹		
Headache and migraine	Bark, leaves and roots	Malawi, Mozambique, Tanzania and Zimbabwe	Ruffo et al. ³ ; Hilonga et al. ¹⁵ ; Gelfand et al. ²⁹ ; Morris ³¹ ; Kitula ³² ; Augustino et al. ³³ ; Iancu ³⁴ ; Fowler ³⁷ ; Stark et al. ⁴¹ ; Wild and Gelfand ⁴² ; Mbereko and Mahlatini ⁴³		
Heart and hypertension problems	Roots	Kenya and Malawi	Wanzala et al. ²³ ; Morris ³¹		
Helminthiasis and intestinal worms	Rootbark and roots	Tanzania	Ruffo et al. ³ ; Chhabra et al. ¹⁹		
Inflammation	Rootbark	Tanzania	Chhabra et al. ¹⁹		
Insecticide	Rootbark	Tanzania	Mkoga et al. ²⁵ ; Moshi and Matoju ²⁶ ; Stevenson et al. ²⁷ ; Stevenson et al. ²⁸		
Magical purposes (prevent witchcraft)	Whole plant	Zimbabwe	Gelfand et al. ²⁹		
Male reproductive problems (aphrodisiac, hydrocele, impotence and libido disorder and prostatitis)	Bark, rootbark and roots	Malawi, Mozambique, Tanzania and Zimbabwe	Ruffo et al. ³ ; Hilonga et al. ¹⁵ ; Chhabra et al. ¹⁸ ; Chhabra et al. ¹⁹ ; Gelfand et al. ²⁹ ; Morris ³¹ ; Augustino et al. ³³ ; Luoga et al. ⁴⁴ ; Moshi and Mbwambo ⁴⁵		
Mental illness	Bark, leaves and roots	Tanzania	Ruffo et al. ³ ; Dery et al. ⁶ ; Rao et al. ⁷ ; Mathias ²⁴		
Nausea	Roots	Zimbabwe	Gelfand et al. ²⁹		
Nose bleeding	Roots	Kenya	Muzila et al. ⁹		
Oedema	Roots	Kenya	Wanzala et al. ²³		
Painful legs, rheumatoid arthritis and rheumatism	Leaves, rootbark and roots	Kenya, Malawi, Mozambique, Tanzania and Zimbabwe	Chhabra et al. ¹⁸ ; Chhabra et al. ¹⁹ ; Wanzala et al. ²³ ; Gelfand et al. ²⁹ ; Kokwaro ³⁰ ; Morris ³¹ ; Chinemana et al. ⁴⁶		
Peptic ulcers	Roots	Kenya	Wanzala et al. ²³		
Purgative	Roots	Tanzania	Mathias ²⁴		
Respiratory problems (asthma, chest pains, colds, cough, flu, pneumonia and tuberculosis)	Bark, leaves and roots	Kenya, Malawi, Tanzania and Zimbabwe	Ruffo et al. ³ ; Nahashon ⁸ ; Muzila et al. ⁹ ; Hilonga et al. ¹⁵ ; Augustino and Gillah ²¹ ; Wanzala et al. ²³ ; Gelfand et al. ²⁹ ; Augustino et al. ³³ ; Otieno et al. ⁴⁷ ; Kareji ⁴⁸		
Skin problems (abscesses and scabies)	Roots	Kenya	Muzila et al. ⁹ ; Kisangau and Herrmann ²² ; Wanzala et al. ²³		
Sexually transmitted diseases	Bark	Zimbabwe	Kambizi and Afolayan ⁴⁹		

Table 2: Phytochemical compo Phytochemical	Value	Plant parts	References
3β,6β-dihydroxy-7β-[(4-hydroxybenzoyl)oxy]-21αH-24-norhopa- 4(23),22(29)-diene	-	Rootbark	Stevenson et al. ²⁷
$3\beta,6\beta,11\alpha$ -trihydroxy- 7β -[(4-hydroxybenzoyl)oxy]- 21α H-24-norhopa- 4(23),22(29)-diene	-	Rootbark	Stevenson et al. ²⁷
11α-acetoxy-3β,6β-dihydroxy-7β-[(4-hydroxybenzoyl)oxy]-21αH-24- norhopa-4(23),22(29)-diene	-	Rootbark	Stevenson et al. ²⁷
$3\beta,6\beta$ -dihydroxy- $7\beta,11\alpha$ -di[(4-hydroxybenzoyl)oxy]- 21α H-24-norhopa-4(23),22(29)-diene	-	Rootbark	Stevenson et al. ²⁷
$3\beta_{,6}\beta$ -dihydroxy-7 β -[(4-hydroxybenzoyl)oxy]-24-norhopa-4(23),17(21)-diene	-	Rootbark	Stevenson et al. ²⁷
$3\beta,6\beta,11\alpha$ -trihydroxy-7 β -[(4-hydroxybenzoyl)oxy]-24-norhopa-4(23),17(21)-diene	-	Rootbark	Stevenson et al. ²⁷
6β , 11α -dihydroxy- 7β -[(4-hydroxybenzoyl)oxy]-3-oxo-24-norhopa-4(23), $17(21)$ -diene	-	Rootbark	Stevenson et al. ²⁷
3-O-β-D-glucuronopyranosyl-2β,16α-dihydroxyolean-12-ene-23,28-dioic acid 28-O-α-L-rhamnopyranosyl(1 \rightarrow 2)-α-L-rhamnopyranoside	-	Rootbark	Cuéllar et al. ⁵¹ ; Cuéllar et al. ⁵²
3-O-β-D-glucuronopyranosyl-2β,16α-dihydroxyolean-12-ene-23,28-dioic acid 28-O-β-D-xylopyranosyl(1 \rightarrow 2)-α-L-rhamnopyranosyl(1 \rightarrow 2)-α-L-rhamnopyranoside	-	Rootbark	Cuéllar et al. ⁵¹ ; Cuéllar et al. ⁵²
3-O-β-D-glucuronopyranosyl-2β,16α-dihydroxyolean-12-ene-23,28-dioic acid 28-O-β-D-xylopyranosyl(1 \rightarrow 3)-β-D-xylopyranosyl(1 \rightarrow 2)-α-L-rhamnopyranosyl(1 \rightarrow 2)-α-L-rhamnopyranoside	-	Rootbark	Cuéllar et al. ⁵¹ ; Cuéllar et al. ⁵²
Alkaloids (mg/g)	56.5 ± 7.8	Leaves	Abdirahman et al. ⁵⁰
Arsenic (µg/g)	0.05 ± 0.01	Leaves	Abdirahman et al. ⁵⁰
Bornesitol	-	Rootbark	Cuéllar et al. ⁵¹ ; Cuéllar et al. ⁵²
Calcium (µg/g)	50.8 ± 0.6	Leaves	Abdirahman et al. ⁵⁰
Cadmium (µg/g)	7.0 ± 0.9	Leaves	Abdirahman et al. ⁵⁰
Chlorine (µg/g)	143.2 ± 1.9	Leaves	Abdirahman et al. ⁵⁰
Chromium (µg/g)	0.01 ± 0.0	Leaves	Abdirahman et al. ⁵⁰
Copper (µg/g)	0.23 ± 0.01	Leaves	Abdirahman et al. ⁵⁰
Flavonoids (mg/g quercetin equivalent (QE))	1.58 ± 0.3	Leaves	Abdirahman et al. ⁵⁰
Iron (µg/g)	16.3 ± 0.2	Leaves	Abdirahman et al. ⁵⁰
Lead (µg/g)	0.08 ± 0.01	Leaves	Abdirahman et al. ⁵⁰
Magnesium (µg/g)	205.9 ± 41.7	Leaves	Abdirahman et al. ⁵⁰
Manganese (µg/g)	2.41 ± 0.05	Leaves	Abdirahman et al. ⁵⁰
Nickel (µg/g)	0.57 ± 0.02	Leaves	Abdirahman et al. ⁵⁰
Pinitol	-	Rootbark	Cuéllar et al. ⁵¹ ; Cuéllar et al. ⁵²
Potassium (µg/g)	1474.6 ± 13.7	Leaves	Abdirahman et al. ⁵⁰
Quebrachitol	-	Rootbark	Cuéllar et al. ⁵¹ ; Cuéllar et al. ⁵²
Saponins (mg/g)	52.3 ± 4.0	Leaves	Abdirahman et al. ⁵⁰
Selenium (µg/g)	< 0.03	Leaves	Abdirahman et al. ⁵⁰
Sodium (µg/g)	1893.3 ± 128.2	Leaves	Abdirahman et al. ⁵⁰
Tannins (mg/g gallic acid equivalent (GAE))	0.77	Leaves	Abdirahman et al. ⁵⁰
Titanium (µg/g)	0.41 ± 0.05	Leaves	Abdirahman et al. ⁵⁰
Total phenols (mg/g gallic acid equivalent (GAE))	1.85 ± 0.08	Leaves	Abdirahman et al. ⁵⁰
Vanadium (µg/g)	0.16 ± 0.03	Leaves	Abdirahman et al. ⁵⁰
Zinc (µg/g)	1.36 ± 0.03	Leaves	Abdirahman et al. ⁵⁰

Table 2: Phytochemical composition of Zanha africana

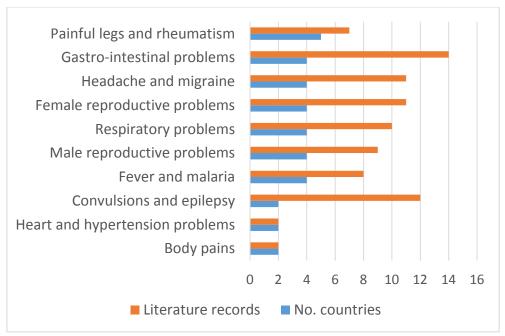


Figure 1. Medicinal applications of Zanha africana derived from literature records

Phytochemical and nutritional composition of Zanha africana

Very little attention has been paid to the macro- and micro-elements of *Z. africana*. One report done by Abdirahman et al.⁵⁰ partly studied this subject and reported values of the nutritional composition of leaves of *Z. africana* (Table 2). A phytochemical screening of the rootbark of *Z. africana* revealed the presence of anthocyanins, coumarins, saponins, steroids, triterpenoids, tannins and volatile oils.¹⁸ Cuéllar et al.⁵¹ and Cuéllar et al.⁵² identified cyclitols and saponins while Stevenson et al.²⁷ identified nor-hopanes from the rootbark of *Z. africana* (Table 2). Future research should focus on evaluating the biological activities of the isolated compounds.

Biological activities of Zanha africana

The following biological activities have been reported from the bark, leaves and rootbark extracts of *Z. africana*, cyclitols and saponins isolated from the species: antibacterial,⁴⁹ antifungal,^{53,54} antiviral,⁵⁵ antidiabetic,⁵⁰ anti-inflammatory,^{51,56} insecticidal,²⁷ anti-trypanosomal,⁵⁷ cytotoxicity^{55,57-60} activities.

Antibacterial activities

Kambizi and Afolayan⁴⁹ evaluated antibacterial activities of acetone, methanol and water bark extracts of Z. *africana* against *Bacillus cereus*, *Bacillus pumilus*, *Bacillus subtilis*, *Enterobacter aerogenes*, *Enterobacter cloacae*, *Escherichia coli*, *Micrococcus kristinae*, *Proteus vulgaris*, *Seratia marcescens* and *Staphylococcus aureus* using microdilution technique. The methanol extracts exhibited activities against all tested pathogens with the exception of *Escherichia coli* with minimum inhibitory concentration (MIC) values ranging from 1.0 mg/ml to 5.0 mg/ml. 49

Antifungal activities

Runyoro et al.⁵³ evaluated antifungal activities of aqueous methanolic root extracts of *Z. africana* bioautography agar overlay method against a standard strain of Candida albicans. The extract exhibited activities with zone of inhibition ranging from 4 mm to 5 mm.⁵³ Fabry et al.⁵⁴ evaluated antifungal activities of methanol stem bark extract of *Z. africana* against *Aspergillus fumigatus*, *Aspergillus fiavus*, *Aspergillus niger*, *Candida albicans*, *Candida tropicalis*, *Candida parapsilosis*, *Candida glabrata*, *Candida guilliermandii* and *Candida krusei* using serial dilution technique. The extract exhibited activities against all tested pathogens with MIC values ranging from 0.3 mg/ml to >8.0 mg/ml and minimal fungicidal concentration (MFC) values ranging from 1.0 mg/ml to >8.0 mg/ml.⁵⁴

Antiviral activities

Beuscher et al.⁵⁵ evaluated antiviral activities of dichloromethane root bark extract of *Z. africana* against poliovirus using the plaque reduction assay. The extract exhibited activities with the effective concentration range of 12.5 μ g/ml to 25.0 μ g/ml with selectivity index for a 50% plaque reduction value of 2.⁵⁵

Antidiabetic activities

Abdirahman et al.⁵⁰ evaluated antidiabetic activities of *Z. africana* in alloxan induced diabetic male Swiss white albino mice by using oral and intraperitoneal routes. The extract showed antidiabetic activities at dose levels of 50 mg/kg, 100 mg/kg, 200 mg/kg and 300 mg/kg body weight.⁵⁰

Anti-inflammatory activities

Recio et al.⁵⁶ evaluated the anti-inflammatory activities of methanol rootbark extracts of Z. africana by administering the extract topically on 12-O-tetradecanoylphorbol-13acetate (TPA)-induced mouse ear oedema and orally on carrageenan-induced mouse paw oedema. The extract significantly reduced the oedema 3 hours after carrageenan injection.⁵⁶ Cuéllar et al.⁵¹ evaluated the anti-inflammatory activities of methanol root bark extracts of Z. africana and compounds 3-O-β-D-glucuronopyranosyl-2β,16αthe dihydroxyolean-12-ene-23,28-dioic acid 28-O-α-Lrhamnopyranosyl($1\rightarrow 2$)- α -L-rhamnopyranoside, 3-O- β -Dglucuronopyranosyl-28.16a-dihydroxyolean-12-ene-

23,28-dioic acid 28-O- β -D-xylopyranosyl(1 \rightarrow 2)- α -L-rhamnopyranosyl(1 \rightarrow 2)- α -L-rhamnopyranoside, 3-O- β -D-glucuronopyranosyl-2 β ,16 α -dihydroxyolean-12-ene-

23,28-dioic acid 28-O- β -D-xylopyranosyl(1 \rightarrow 3)- β -D- $(1\rightarrow 2)$ - α -L-rhamnopyranosyl $(1\rightarrow 2)$ - α -Lxylopyranosyl rhamnopyranoside, bornesitol, quebrachitol and pinitol isolated from the species using arachidonic acid induced mouse ear edema, mouse-ear edema induced by multiple topical applications of 12-O-tetradecanoylphorbol 13oxazolone-induced acetate, contact-delayed hypersensitivity in mouse-ear edema, myeloperoxidase assay and PLA2 assay system. The extract exhibited activities against arachidonic acid acute edema, 12-Otetradecanoylphorbol 13-acetate induced chronic inflammation, oxazolone delayed-type hypersensitivity in mice and the extract also showed activities as inhibitors of PLA₂. The compounds 3-O-β-D-glucuronopyranosyl-2β,16α-dihydroxyolean-12-ene-23,28-dioic acid 28-O-α-L-rhamnopyranosyl($1\rightarrow 2$)- α -L-rhamnopyranoside, 3-O- β -D-glucuronopyranosyl-2β,16α-dihydroxyolean-12-ene-23.28-dioic acid 28-O- β -D-xylopyranosyl(1 \rightarrow 2)- α -Lrhamnopyranosyl($1 \rightarrow 2$)- α -L-rhamnopyranoside and pinitol showed activities as inhibitors of PLA2.51

Insecticidal activities

Stevenson et al.²⁷ evaluated insecticidal activities of chloroform, methanol and water extracts of *Z. africana* rootbark and the compounds 3β , 6β -dihydroxy- 7β -[(4-hydroxybenzoyl)oxy]- 21α H-24-norhopa-4(23),22(29)-

diene, 3β , 6β , 11α -trihydroxy- 7β -[(4-hydroxybenzoyl)oxy]-21 α H-24-norhopa-4(23),22(29)-diene, 11 α -acetoxy- 3β , 6β dihydroxy- 7β -[(4-hydroxybenzoyl)oxy]- 21α H-24-

norhopa-4(23),22(29)-diene, 3β , 6β -dihydroxy- 7β ,11 α -di[(4-hydroxybenzoyl)oxy]-21 α H-24-norhopa-

4(23),22(29)-diene, 3β ,6 β -dihydroxy-7 β -[(4-hydroxybenzoyl)oxy]-24-norhopa-4(23),17(21)-diene,

 $3\beta,6\beta,11\alpha$ -trihydroxy- 7β -[(4-hydroxybenzoyl)oxy]-24norhopa-4(23),17(21)-diene and $6\beta,11\alpha$ -dihydroxy- 7β -[(4-

hydroxybenzoyl)oxy]-3-oxo-24-norhopa-4(23),17(21)-

diene isolated from the species by evaluating its toxicity on bruchid beetles, *Callosobruchus maculatus* with rotenone as the positive control. The extracts inhibited oviposition and caused significantly higher mortality of *Callosobruchus maculatus* at a rate of application equivalent to that applied by farmers compared to control insects. Two compounds 3β ,6β-dihydroxy-7β-[(4hydroxybenzoyl)oxy]-21αH-24-norhopa-4(23),22(29)- diene and $3\beta,6\beta$ -dihydroxy- 7β -[(4-hydroxybenzoyl)oxy]-24-norhopa-4(23),17(21)-diene were toxic to and reduced oviposition of *Callosobruchus maculatus* in a dose dependent manner.²⁷

Anti-trypanosomal activities

Nibret et al.⁵⁷ evaluated the in vitro anti-trypanosomal activities of dichloromethane and methanol root extracts of *Z. africana* against the bloodstream form of *Trypanosoma brucei brucei*. The dichloromethane extract exhibited activities with half maximal inhibitory concentration (IC₅₀) value of 12.6 μ g/ml while methanol extract exhibited IC₅₀ value of 33.5 μ g/ml.⁵⁷

Cytotoxicity activities

Chapuis et al.58 evaluated the cytotoxicity activities of dichloromethane and methanol leaf, root bark and stem bark extracts of Z. africana using a calorimetric assay to determine cell survival of human colon carcinoma Co115 cells. The dichloromethane root bark extract exhibited activities with half maximal effective dose (ED₅₀) value of 6.8 µg/ml.⁵⁸ Beuscher et al.⁵⁵ evaluated cytotoxicity activities of dichloromethane, methanol and 25% ethanol root bark extracts of Z. africana on HeLa cells using a fluorescence assay with 4-methylumbelliferyl heptanoate (4-MeUH). The dichloromethane extract exhibited non-toxic limit concentration of 12.5 µg/ml.⁵¹ Runyoro et al.⁵⁹ evaluated the cytotoxicity activities of aqueous methanolic root extracts of Z. africana against HeLa (human cervical carcinoma) cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) dye reduction assay. The extract at a concentration of 10 µg/ml inhibited cell proliferation by 75.7%.⁵⁹ Nibret et al.⁵⁷ evaluated the cytotoxicity activities of dichloromethane and methanol root extracts of Z. africana against human leukaemia HL-60 cells with diminazene aceturate as the standard drug. The dichloromethane extract exhibited activities with IC₅₀ value of 133.2 μ g/ml and methanol extract exhibited IC₅₀ value of 152.7 µg/ml while diminazene aceturate exhibited IC_{50} value of 128.9 $\mu g/ml.^{57}\ Munissi^{60}$ evaluated the cytotoxicity activities of petroleum ether, dichloromethane, ethanol, methanol:chloroform (1:1) and water root back extracts of Z. africana using the brine shrimp (Artemia salina Leach) nauplii lethality test. The extract exhibited activities with half maximal lethal concentration (LC₅₀) values ranging from 41.1 μ g/mL and 240.0 µg/mL.60

Toxicity activities

Abdirahman et al.⁵⁰ evaluated toxicity activities of *Z. africana* in male Swiss white albino mice by orally and intraperitoneally administering 1 g/kg body weight of extract daily for 28 days and assessing changes in body and organ weights, hematological and biochemical parameters. The dose of 1 g/kg body weight caused toxicological effects as demonstrated by the body and organ weight changes, hematological and biochemical parameters.⁵⁰

CONCLUSION

The present review summarizes the ethnomedicinal uses, phytochemistry and biological activities of the bark, leaves, rootbark and roots extracts of Z. africana. The historical traditional usage of Z. africana as herbal medicine in east, central and southern Africa calls for detailed phytochemical and pharmacological studies aimed at correlating its documented ethnomedicinal uses with the phytochemical and pharmacological properties of the species. There is need for clinical and toxicological evaluations since Z. africana contains potentially toxic compounds. Therefore, future research should focus on identification of toxic compounds, the possible side effects caused by taking Z. africana as herbal medicine, and mechanisms of how potential toxic components of the species can be managed when the species is used as herbal medicine.

Conflict of interest

The author declares that he has no conflict of interest.

Acknowledgements

I would like to express my gratitude to Govan Mbeki Research and Development Centre (GMRDC), University of Fort Hare for financial support to conduct this study.

REFERENCES

- [1] Mojeremane, W., in: Lemmens, R.H.M.J., Louppe, D., Oteng-Amoako, A.A. (Eds.), Plant Resources of Tropical Africa 7: Timbers 2, PROTA Foundation, Backhuys Publishers, Leiden 2012, pp. 676-678.
- Moreno, B.M., Escobar, J.P., Lopes, G.M., Rev. Fac. Nac. Agron. [2] Medellín. 2019, 72, 8829-8840.
- [3] Ruffo, C.K., Birnie, A., Tengnas, B., Edible Plants of Tanzania, RELMA Technical Handbook Series 27, Regional Land Management Unit, Swedish International Development Cooperation Agency, Nairobi 2002
- [4] Mpasiwakomu, R.A., Nyomora, A.M.S., Gimbi, A., Huria J. 2017, 24, 150-168.
- [5] Palgrave, C.M., Keith Coates Palgrave Trees of Southern Africa, Struik Publishers, Cape Town 2002.
- Dery, B.B., Otsyina, R., Ng'tigwa, C., Indigenous Knowledge of Medicinal Trees and Setting Priorities for their Domestication in Shinyanga Region, Tanzania, International Center for Research in Agroforestry, Nairobi 1999.
- Rao, M.R., Palada, M.C., Becker, B.N., Agrofor. Syst. 2004, 61, 107-[7] 122.
- [8] Nahashon, M., Conservation of Wild-harvested Medicinal Plant Species in Tanzania: Chain and Consequence of Commercial Trade on Medicinal Plant Species, MSc Dissertation, Uppsala University, Uppsala 2013.
- [9] Musila, W., Kisangau, D., Muema, J., Conservation Status and Use of Medicinal Plants by Traditional Medical Practitioners in Machakos District, Kenya, National Museums of Kenya, Nairobi, 2005.
- [10] Bundschuh, T.V., Hahn, K., Wittig, R., Flora Veg. Sudano-Sambesica 2011, 14, 3-8.
- [11] Mander, M., Diederichs, N., Steytler, N., in: Diederichs, N. (Ed.), Commercialising Medicinal Plants: A Southern African Guide, Sun Press, Stellenbosch 2012, pp. 167-192.
- [12] Meke, G.S., Mumba, R.F.E., Bwanali, R.J., Williams, V.L., Int. J. Sustain. Develop. World Ecol. 2017, 24, 73-87.
- [13] Mahunnah, R.L.A., Augustino, S., Otieno, J.N., Elia, J., Med. Pl. Cons. 2012, 15, 35-41.
- [14] Otieno, J., Abihudi, S., Veldman, S., Nahashon, M., Van Andel, T., de Boer, H.J., J. Ethnobiol. Ethnomed. 2015, 11, 10.
- [15] Hilonga, S., Otieno, J.N., Ghorbani, A., Pereus, D., Kocyan, A., de Boer, H., S. Afr. J. Bot. 2018, 122, 214-224.
- [16] Quattrocchi, U., CRC World Dictionary of Plant Names: Common Names, Scientific Names, Eponyms, Synonyms and Etymology, CRC Press, Boca Raton 2000.
- [17] Swanepoel, W., Bothalia 2013, 43, 88-89.

- [18] Chhabra, S.C., Uiso, F.C., Mshiu, E.N., J. Ethnopharmacol. 1984, 11, 157-179
- [19] Chhabra, S.C., Mahunnah, R.L.A., Mshiu, E.N., J. Ethnopharmacol. 1991, 33, 143-157
- [20] Runyoro, D.K.B., Ngassapa, O.D., Matee, M.I.N., Joseph, C.C., Moshi, M.J., J. Ethnopharmacol. 2006, 106, 158-165.
- [21] Augustino, S., Gillah, P.R., Int. For. Rev. 2005, 7, 44-58.
- [22] Kisangau, D.P., Herrmann, T.M., Int. J. Biod. Sci. Manag. 2007, 3, 184-192.
- Syombua, [23] Wanzala, W., М., Alwala, J.O., Indian Ethnophytopharmaceut. 2016, 2, 6-58.
- [24] Mathias, M.E., Taxon 1982, 31, 488-494.
- [25] Mkoga, Z.J., Shetto, R.M., Mkomwa, S., Mwakimbwala, R., Kabungo, D.A., Ndegeulaya, D., Tanzania Agr Training Newslet. 2004, 19, 6-8. [26] Moshi, A.P., Matoju, I., Crop Prot. 2017, 92, 16-28.
- [27] Stevenson, P.C., Green, P.W.C., Veitch, N.C., Farrell, I., Kusolwa, P.,
- Belmain, S.R., Phytochem. 2016, 123, 25-32.
- [28] Stevenson, P.C., Isman, M.B., Belmain, S.R., Indust. Crops Prod. 2017, 110.2-9
- [29] Gelfand, M., Mavi, S., Drummond, R.B., Ndemera, B., The Traditional Medical Practitioner in Zimbabwe: His Principles of Practice and Pharmacopoeia, Mambo Press, Gweru 1985.
- [30] Kokwaro, J.O., Medicinal Plants of East Africa, University of Nairobi, Nairobi 1993.
- [31] Morris, B., Chewa Medical Botany: A Study Of Herbalism in Southern Malawi, International African Institute, London 1996.
- [32] Kitula, R.A., J. Ethnobiol. Ethnomed. 2007, 3, 7.
- [33] Augustino, S., Hall, J.B., Makonda, F.B.S., Ishengoma, R.C., J. Med. Pl. Res. 2011, 5, 6352-6372.
- [34] Iancu, M., Local Use of Traditional and Modern Medicine: A Case Study in Babati District, Tanzania, BSc Honours Dissertation, Södertörn University College, Flemingsberg 2011.
- [35] Kaingu, C.K., Oduma, J.A., Kanui, T.I., J. Ethnopharmacol. 2011, 137, 495-502
- [36] Lukwa, N., Mutambu, S.L., Makaza, N., Molgaard, P., Furu, P., Niger. J. Natural Prod. Med. 2001, 5, 4-7.
- [37] Fowler, D.G., Traditional Fever Remedies: A List of Zambian Plants, Royal Botanic Gardens, Kew, London 2006.
- [38] Chinsembu, K.C., Acta Trop. 2015, 152, 32-48.
- [39] Waiganjo, B.W., Githae, E.W., Warui, C.M., Opiyo, E.A., Int. J. Med. Pl. Res 2015, 4, 157-167.
- [40] Kapundu, M., Warin, R., Delaude, C., Bull. Soc. Chim. Belg. 1992, 101, 283-286.
- Stark, T.D., Mtui, D.J., Balemba, O.B., Animals 2013, 3, 158-227. [41]
- Wild, H., Gelfand, M., Central Afr. J. Med. 1959, 5, 292-305. [42]
- [43] Mbereko, A., Mahlatini, P. Int. J. Sociol. Anthropol. 2014, 6, 136-145.
- [44] Luoga, E.J., Witkowski, E.T.F., Balkwill, K., Econ. Bot. 2000, 54, 328-343
- [45] Moshi, M.J., Mbwambo, Z.H., Pharmaceut. Biol. 2002, 40, 552-560. Chinemana, F., Drummond, R.B., Mavi, S., De Zoysa, I., J. [46]
- Ethnopharmacol. 1985,14, 159-172. [47]
- Otieno, J.N., Magadula, J.J., Kakudidi, E., Kirimhuzya, C., Orodho, J., Okemo, P., Int. J. Biod. Cons. 2011, 3, 610-617.
- [48] Kareji, A.E., Int. J. Herbal Med. 2013, 1, 85-87.
- [49] Kambizi, L., Afolayan, A.J., J. Ethnopharmacol. 2001, 77: 5-9.
- [50] Abdirahman, Y.A., Juma, K.K., Makori, W.A., Agyirifo, D.S., Ngugi, M.P., Gathumbi PK, Ngeranwa, J.J.N., Njagi E.N.M., Pharm. Anal. Acta. 2015, 6, 9.
- [51] Cuéllar, M.J., Giner, R.M., Recio, M.C., Just, M.J., Manez, S., Cerda, M., Hostettmann, K., Rios, J.L., J. Nat. Prod. 1997, 60, 1158-1160.
- [52] Cuéllar, M.J., Giner, R.M., Recio, M.D., Just, M.J., Manez, S., Rios, J.L., Bilia, A.R., Msonthi, J., Hostettmann, K., J. Nat. Prod. 1997, 60, 191-194
- [53] Runyoro, D.K.B, Matee, M.I.N., Ngassapa, O.D., Joseph, C.C., Mbwambo, Z.H., BMC Compl Alt Med 2006, 6, 11.
- [54] Fabry, W., Okemo, P., Ansorg, R., *Mycoses* 1996, 39, 67-70.
 [55] Beuscher, N., Bodinet, C., Neumann-Haefelin, D., Marston, A., Hostettmann, K., J. Ethnopharmacol. 1994, 42, 101-109.
- [56] Recio, M.C., Giner, R.M., Manez, S., Rios, J.L., Marston, A., Hostettmann, K., Phytother. Res. 1995, 9, 571-574.
- [57] Nibret, E., Ashour, M.L., Rubanza, C.D., Wink, M., Phytother. Res. 2010, 24, 945-947.
- [58] Chapuis, J.-P., Sordat, B., Hostettmann, K., J. Ethnopharmacol. 1988, 23. 273-334.
- Runyoro, D.K.B., Kamuhabwa, A., Ngassapa, O.D., de Witte, P., East [59] Central Afr. J. Pharmaceut. Sci. 2005, 8, 35-39
- [60] Munissi, J.J.E., Tanzania J. Sci. 2019, 45, 44-52.