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Abstract 
Tuberculosis (TB) is now a curable malady, but still million of the people suffer and lots of them dies every year. It means that 
new and potent drug molecules are required to prevail over multidrug resistant. Towards this direction, four different shape-
based strategies (e.g electroshape, spectrophores, shape-IT, and align-IT) were employed to identify novel drug-like 
inhibitors against dihydodipicolinate synthase (DHDPS) of Mycobacterium tuberculosis. The best pose of template 
mplecule (PUB475318) was used to perform ligand-based search against various libraries of small chemical molecules (e.g., 
DrugBank, Ligand Expo, ChEMBL, ChEBI, GLASS, HMDB, and ZINC database) that predicted 329 virtual hits. These data 
sets were further shortened to 295 pro-lead molecules through filtration of Lipinski rule of five. Further, ADMET analysis was 
carried out that depicted 25 plausible hits following all the criteria of pharmacokinetic analysis that was subsequently reduced 
to 9 consistent hits after multi-scoring molecular interaction analysis using Biopredicta, MVD, and ADT. Hereafter, 2 out of 9 
hits (DB01118 and DB00749) were succeeded as potent pro-lead molecules after comparison of known inhibitors 
(PUB475318 and CID10367). Moreover, DB01118 was depicted as the best lead molecule after post analysis of MD 
simulation study of 10 ns. 
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INTRODUCTION 
Dihydrodipicolinate synthase (DHDPS) is a key enzyme 
for the biosynthesis of essential amino acids and several 
important metabolites in microbes. In the aspartate 
biosynthetic pathway, numerous important metabolites are 
synthesized such as diaminopimelate (DAP), S-
adenosylmethionine, and Dipicolinate. These metabolites 
play fundamental roles in essential developmental 
processes such as bacterial cell wall biosynthesis and 
virulence factor production. The dipicolinate is a major 
element of sporulation in gram-positive bacteria (Ragkousi 
et al., 2003) and DAP is necessary for cross-linking of the 
peptidoglycan polymers in bacterial cell wall synthesis 
(Van Heijenoort, 2001). The computational approaches 
such as virtual screening have been successfully used as an 
efficient alternative to high throughput screening 
approaches for the discovery and development of new 
compounds (Kumar et al., 2015). In the present scenario, a 
shape-based screening is considered as one of the important 
and well-known approaches in the field of CADD. Shape-
priority docking method based is also introduced recently, 
which highlights the importance of shape-based analysis of 
drug molecules. This approach utilizes the concept of shape 
and electrostatic potential similarity to select the molecule 
which may show similar binding mode into the active site 
(Kirchmair et al., 2009). This approach plays a role in the 
identification of novel inhibitors with high potency (Temml 
et al., 2014; Kumar et al., 2013). It can also be used as an 
alternative for the optimization of more selective and potent 
new antimicrobial compounds instead of synthesizing new 
inhibitors.  
Inhibition of DHDPS enzyme is a promising drug target 
strategy against Mycobacterium tuberculosis (Mtb). 
Numerous inhibitors against Mtb-DHDPS have been 
identified so for, but quest to find the best is still 
unexplored. Towards this direction a comparison between 
experimentally known and predicted inhibitor was made by 
(Garg et al., 2010) through molecular dynamics simulation 

study. They proposed that PUB475318 is bestowed better 
inhibition potential as compared to the previously reported 
inhibitors of Mtb-DHDPS.  
 In this work, the best binding conformation of PUB475318 
(Garg et al., 2010) was used for shape-based virtual 
screening using SwissSimilarity tool 
(http://www.swisssimilarity.ch/). The top rank hits were 
further subjected to ADME and toxicity filters.  The final 
filter was based on molecular docking analysis. Each 
screened molecule carries the characteristics of the highly 
electronegative groups on both sides separated by an 
average distance of 6 Å. Finally, the best predicted 6 
compounds exhibited minimum three H-bonding 
interactions with Arg99 and Arg249. Moreover, MD 
simulations were carried out on selected compound in order 
to check the stability of ligand and target complex. During 
the MD simulations, the compounds showed same H-
bonding interactions and remained bound to key active 
residues. These identified hits could be useful for designing 
the more potent inhibitors against DHDPS family.  

METHODOLOGY 
Retrieval of protein 3D structure 
The crystal structure (3D) of Mtb-DHDPS (PDB ID: 
1XXX) was extracted from RCSB Protein Data Bank. The 
coordinates of the chloride ion, magnesium ion, 2, 3-
dihydroxy-1, 4-dithiobutane (DDT), and water molecules 
were removed to prepare the protein for molecular docking. 
The protein was energetically minimized using the 
CHARMm force field. 

Retrieval of ligands 3D structure 
3D structures of ligands were retrieved from the PubChem 
database of NCBI. The structures of PUB475318-shape 
based similar compounds were extracted from the Swiss 
Similarity web tool for low to ultra high-throughput ligand-
based virtual screening database. By applying CHARMm 
force, ligands were energetically minimized. 
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Figure 1. Flow chart of methodology. 

 

 
Figure 2.  Flow chart of shape-based outcome. 

 
 
Drug-likeness prediction 
Lipinski rule of five (RO5) was employed to predict the 
drug likeness of ligands. RO5 includes molecular mass (< = 
500 Dalton), high lipophilicity (Log p < = 5) H-bond 
donors (< = 5), H-bond acceptors (< = 10) and molar 
refractivity (40-130). These filtrations ensure drug-likeness 
for molecules obeying two or more features of RO5 
(Hamzeh-Mivehroud et al., 2016; El-Telbany et al., 2017). 
 
Docking simulations 
BioPredicta tool of VlifeMDS package (Junaid et al. 2016), 
MVD (http://www.clcbio.com) and AutoDock Tools 4.0 

were used for molecular interaction studies of ligands and 
protein. 
 
BioPredicta 
It employed Genetic algorithm (GA), Piecewise Linear 
Pairwise Potential (PLP) and Grid algorithms energy 
minimization by using MMFF force fields. The Dock 
scoring function was used to assess the binding efficacies 
of ligands. This scoring function takes into account the 
terms for van der Walls interaction, hydrophobic effects, 
hydrogen bonding and deformation penalty.  
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Molecular Virtual Docker 
It integrates highly efficient PLP and MolDock scoring 
function for molecular docking. Docking parameters and 
other required parameters were set to default values 
(Shaheen et al. 2015). MolDock-rerank score was further 
employed to judge the binding affinity of ligands. 
 
AutoDock Tools 
Polar H-atoms, Kollman united atom and atom type 
parameters were added and further, non-polar H-atoms 
were merged during generation of the protein pdbqt file. 
During preparation of ligand pdbqt file, polar H-atoms 
added, non-polar H-atoms merged, number of torsions, and 
rotatable bonds were defined. Cubic volume of 40 × 40 × 
40 Å 3 with 0.408 Å grid points spacing and X: 240.7, Y: 
51.50, Z: 78.02 centre coordinates was set to cover the 
entire active site and accommodate ligand to move freely. 
Lamarckian genetic algorithm was employed for the 
receptor-fixed ligand-flexible docking calculations. The 
conformer having lowest free energy of binding (ΔG) was 
considered for further analysis Khan et al, 2011; Khan et 
al, 2013; Khan et al, 2015;  Rehman et al, 2016; Khan et 
al, 2017; Sharma et al, 2019). 
 
MD simulation 
Molecular dynamics (MD) simulation of protein-ligand 
docked complex was performed using GROMACS 5.0.5 
(Spoel et al., 2005) software with amber99SB-ildn 
(Lindorff-Larsen et al., 2010) force field. Topology files 
for the ligand molecules were generated using antechamber 
program with GAFF force field (Wang et al., 2004). 
Protein-ligand complex was solvated in cubic box with 
TIP3P (Jorgensen et al., 1983) water model molecules as 
solvent. Periodic boundary conditions were used during 
MD simulation. Bond lengths were constrained using 
LINCS algorithm (Hess et al., 1997). Seven sodium ions 
(Na+) were added to neutralize the system. The particle 
mesh Ewald method was  used for electrostatic 
calculations. Energy minimization of system was 
performed using steepest descent algorithm with tolerance 
value of 100 kJ mol-1 nm-1. Energy minimization was 
followed by equilibration using NVT and NPT ensemble 
for 500 ps. Finally, 10 ns production MD was performed 
for the system, with trajectories generated every 2 femto 
second (fs), and snapshots saves every 2 pico second (ps) 
(Tripathi et al.,2015). Gromacs utility commands gmxrms, 
gmxrmsf, gmxsasa,gmx gyrate and  gmxhbondwere used to 
analyze root mean square deviation (RMSD), root mean 
square fluctuations (RMSF), ssolvent accessible surface 
area (SASA), radius of gyration (Rg) and number of 
hydrogen bonds formed between protein and ligands, 
respectively. Plots were generated using GRACE plotting 
software (http://plasma-gate.weizmann.ac.il/Grace/). Figure 
was generated using PyMol. 
Binding free energy for the protein-ligand docked complex 
was calculated using g_mmpbsatool (Kumari et al., 2014). 
Molecular mechanics Poission-Boltzmann surface area 
(MMPBSA) method was utilized to calculate the binding 
free energy between protein and ligand. MMPBSA 
calculations were performed using 50 snapshots (one every 

10 ps) taken from the last 1ns of molecular dynamics 
trajectory (Kumari et al., 2014; Tripathi et al.,2015). 
 
Shape-based screening 
The approach utilizes the concept of shape and electrostatic 
potential similarity to select new molecules which may 
show similar binding modes into the active site. This is an 
effective tool for identification and optimization of novel 
inhibitors with high potency and more selectivity (Zoete et 
al., 2016). The Shape Based score was used to rank the 
screened molecules. The best 329 hits from approved, 
experimental, withdrawn, investigational in Swiss 
Similarity web tool for ligand based virtual screening 
(Zoete et al., 2016). A flow chart of the virtual screening 
used in this approach as shown in Figure 1.  
 

RESULTS AND DISCUSSION 
 
Binding mode analysis 
Four different shape-based approaches (e.g., Electroshape, 
Spectrophores, Shape-IT, and Align-IT) (Zoete et al., 2016) 
were employed to identify potential bioactive analogs from   
different categories (e.g., Approved: 1'516; Experimental: 
4'788; Investigational: 504, and Withdrawn: 161 
molecules) of drug-like databases using energetically stable 
pose of the template (PUB475318). First two methods 
allow screening via 3D similarity without superimposing 
the molecular coordinates of template structure. While last 
two methods perform screening through superimposing the 
molecular coordinates excluding the position of 
pharmacophoric features.. It was ensued from outcome of 
the study that most of the predicted lead molecules 
exhibited similar functional groups but different scaffolds.  
Lead molecules having diverse scaffolds showed better 
propensity towards the molecular interactions with target 
protein. Flow chart of shape-based outcome is shown in 
Figure 2.  
 
Toxicity and ADME studies 
The ADME and toxicity (carcinogenicity, mutagenicity, 
and hepatotoxicity) of screened molecules were predicted. 
Non-toxic molecules were filtered using carcinogenicity 
and mutagenicity rat models. ADME properties [AlogP98, 
absorption (95% and 99% level), polar surface area, blood 
brain barrier, solubility, and hepatotoxicity] were calculated 
for Non-toxic molecules from ADME descriptor tool. A 
total of 25 compounds are chosen for further analysis. 
 
Molecular docking studies 
Molecular docking studies were performed for the best 
binding conformation predication of screened molecules 
into the active site of Mtb-DHDPS using AutoDock4.0 
program. The 25 molecules were employed in molecular 
docking studies to explore the binding mode. Total 9 
molecules exhibited good binding free energies as well as 
the required H-bonding interactions with active site 
residues Thr54, Thr55, Arg148 Tyr143, and Lys171 (Table 
1).  
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Table 1. Molecular interactions of top predicted hits and 
their comparison with known inhibitors 

 
#predicted inhibitor (Garg et al., 2010) 
*experimentally known inhibitor (Mitsakos et al., 2008)  
 
DB01118 occupied the space nearer to the active site of 
Mtb-DHDPS and showed consistency in docking results 
followed by DB05074 and template (PUB475318). These 
molecules have similar structure as PUB475318 and 
followed the same interactions, which is found in 
PUB475318 during molecular docking and MD simulation 
studies. This is non derivatives of cefmetazole, and hence, 
they can be chosen for DHDPS inhibitors and to modulate 
for lead optimization. Molecular interaction of DB01118, 

DB05074 and template (PUB475318) are respectively 
shown in Figure 3, 4 and 5.  
 
MD simulations 
The RMSD profile of protein and ligand were analyzed. 
Figure 6a depicts the RMSD of protein backbone atoms 
taking initial protein structure as reference. Protein RMSD 
achieved stability within initial 1 ns and showed stability in 
the trajectory with average value of (1.22 ± 0.14 Å). 
Similarly, ligand showed stable RMSD with average value 
(1.88 ± 0.20 Å) (Figure 6b). From the RMSD analysis it 
can be inferred that protein-ligand complex was showing 
stable conformation during MD simulation of 10 ns.  
Root Mean Square Fluctuation (RMSF) of the protein 
backbone atoms showed small values (0.5 -1 Å), 
corresponding to the stability in the protein structure in 
molecular dynamics trajectories (Figure 6c). Similarly, the 
radius of gyration (Rg) (Figure 6d) represents the 
compactness of protein showed stability in the protein with 
average value of 18.08 ± 0.08 Å. Further, solvent 
accessible surface area (SASA) (Figure 6e) analysis of 
protein also represented stable surface area of the protein 
with average value 122.15 ± 1.70 nm2. 2-3 hydrogen bonds 
were formed between the protein-ligand complexes during 
production MD, showing stability of ligand binding (Figure 
6f). 

       
Figure 3.  Docked complex of DB01118 with DHDPS.    Figure 4.  Docked complex of DB05074 with DHDPS. 

 

 
Figure 5. Docked complex of PUB475318 with DHDPS. 
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Figure 6. MD simulation: (a) rmsd trajectory of protein, (b) rmsd trajectory of DB01118, (c) RMSF of protein backbone, 

(d) radius of gyration, (e) SASA of protein, and (f) H-bond formation stability. 
 
Binding free energy was calculated for the protein-ligand 
complex (Table 2). The ligand showed good binding free 
energy of -45.32±9.38 kJ/mol. From the whole MD 
simulation it can be ascertained that the ligand was 
showing good binding with protein and was in stable 
conformation at binding site. 
 

CONCLUSION 
The molecular docking studies on shape-based virtual 
screening compound of DB01118 indicate that the docked 
complex showed favorable molecular interaction as 
comapred to template molecule (PUB475318) and the 
experimentally known inhibitors blocking at the active site 
of Mtb-DHDPS enzyme. Besides, there are reports of 
PUB475318 and its derivatives showing strong anti-
bacterial property against Mtb. The compounds used in the 
present docking study could also possess anti-bacterial 
activity against Mtb since they are shape-based compound 
of PUB475318 at 90% similarity. Moreover, another 
significatnt observation from the ligand–protein interaction 
analysis between the top docking hits and the active site 
residues of DHDPS enzyme reveals that the interaction 
with Arg148 play an imperative role in stable binding. 
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