

Validated RP-HPLC Method for the Determination of Clofarabine in Bulk and Tablet Dosage Form

Dr.P.D.Chaithanya Sudha,

Associate professor, Department of Pharmaceutical analysis, Krupanidhi college of Pharmacy, Bangalore.

Abstract

A novel, simple and economic reverse phase high performance liquid chromatography (RP-HPLC) method has been developed for the estimation of Clofarabine in bulk and tablet dosage form with greater precision and accuracy. Separation was achieved on Develosil C18 MG-5 column (150X4.6mm i.d.,5 μ m) in isocratic mode using Triflouro acetic acid P^H-3.6 buffer, Methanol and Acetonitrile in the ratio of 70:15:15(v/v/v) as mobile phase, pumped in to the column at flow rate of 1.0 mL min–1and the detection of eluent from the column was carried out using variable wavelength UV detector at 263 nm. The total run time was 10 min and the column was maintained at ambient temperature. The retention time of Clofarabine was 5.578 min. The standard curves were linear over the concentration range of 10-30 μ g/ml with R² 0.999 and the LOD and LOQ values for Clofarabine were 0.0007 μ g/ml and 0.023 μ g/ml , respectively. The percentage recovery was found to be 101.78 – 99.86 %, the % RSD was found to be 0.08. The percentage amount of a marketed tablet formulation of Clofarabine was found to be 101.2 %. The method was validated as per ICH guidelines. Validation studies demonstrated that the proposed RP-HPLC method is simple, specific, rapid, reliable and reproducible. Hence the proposed method can be applied for the routine quality control analysis of Clofarabine in bulk and tablet dosage forms.

Key words: Clofarabine, RP-HPLC, Method Development, Validation, ICH guidelines

INTRODUCTION:

Clofarabine is a next generation deoxyadenosine analogue which is used for the treatment of pediatric leukemia. The mechanism of its anti-cancer activity involves the combination of direct inhibition of DNA synthesis and ribonucleotide reductase and induction apoptosis. This drug is effective against various sub types of leukemia and solid tumors. The Chemical name of Clofarabine is(2R, 3R, 4S, 5R)-5-(6-amino-2-chloro-9H-purin-9yl)-4-fluoro-2-

(hydroxymethyl) oxolan-3-ol and chemical formula is $C_{10}H_{11}ClFN_5O_3$ and molecular weight is 303.68 g/mol.

Chemical Structure:

MATERIALS AND METHODS Instrumentation

List of instruments used

S. No.	Name	Manufacturer
1.	HPLC(empower-2software)	Aliance waters(2487)
2.	HPLC detector	Dual absorbance detector
3.	pH Meter	Lab india
4.	Centrifuge	SV scientific
5.	Ultra Sonicator	SV scientific
6.	UV Spectrophotometer	SHIMADZU
7.	Micro Balance	Mettle Toledo
8.	Water Purifier	Millipore

Chromatographic conditions:

Mobile phase: Buffer -trifluoro acetic acid (pH-3.6) and solvent

Mixture (methanol and wa	ter) the ratio of $70:15:15(v/v/v)$				
Column : Develosil C-18	Column : Develosil C-18 MG-5(250x4.6mm), 5µm				
Flow rate	: 1.0 ml/min				
Detector wavelength	: 263 nm				
Column temperature	: 30 [°] C				
Injection volume	: 10 μl				
Run time	: 10 min				
Retention time	: 5.578 min				

Drug:

The reference sample of Clofarabine was gifted by M/s Natco Drugs Limited, Hyderabad.

The Branded formulations of Clofarabine (Lamitor tablets of Torrent Pharma and Lamepil tablets of IPCA laboratories) were procured from the local market.

Chemicals and solvents :

Methanol HPLC grade (Qualigens, India) Acetonitrile HPLC grade (Qualigens, India) Tri ethyl amine HPLC grade (Qualigens, India) Trifluoro acetic acid HPLC grade (Qualigens, India) Ortho-phosphoric acid HPLC grade (Qualigens, India) HPLC grade water prepared by using Millipore Milli Q system

Preparation of the P^H 3.6 buffer solution:

Accurately transfer 1 mL of Trifluroacetic acid in 1000 ml of purified water and mix. Adjust the pH of the solution to 3.6 ± 0.05 with triethyl amine.

Preparation of standard and sample solutions of Clofarabine:

Standard Preparation:

Accurately Weigh and transfer accurately 20.0 mg of Clofarabine working Standard into a 100 ml clean dry

volumetric flask, and add about 60 ml of diluents, dissolve and dilute to volume with diluent. Transfer 5.0 ml above solution into 50 ml volumetric flask and dilute to volume with diluents.

Sample preparation:

Accurately weigh 2.0 mL of sample solution in to 100 mL volumetric flask without any loss of solution. Dilute to volume with diluents, shake and mix well.

Preparation of the mobile phase:

Prepare a filtered (0.45μ) and degassed mixture of buffer, Methanol and Acetonitrile in the ratio of 70:15:15 v/v respectively

Diluent:

Prepare a mixture of Water Methanol and Acetonitrile in the ratio of 70:15:15 v/v $\,$

CHROMATOGRAPHIC CONDITIONS

For developing the method, a systematic study of the effect of various factors was undertaken by varying one parameter at a time and keeping all other conditions constant. The following studies were conducted for this purpose. A Develosil C-18 MG-5(250x4.6mm), 5μ m column was chosen as the stationary phase for this study.

The mobile phase and the flow rate

In order to get sharp peak and base line separation of the components, the author has carried out a number of experiments by varying the commonly used solvents, their compositions and flow rate. To effect ideal separation of the drug under isocratic conditions, mixtures of commonly used solvents like water, methanol and acetonitrile with or without different buffers in different combinations were tested as mobile phases on a C_{18} stationary phase. A binary mixture of Buffer –trifluoro acetic acid (pH-3.6) and solvent Mixture (methanol and water) in the ratio of 70:15:15v/v was proved to be the most suitable of all the combinations since the chromatographic peaks obtained were better defined and resolved and almost free from tailing.

A mobile phase flow rate of 1.0 mL/min. was found to be suitable in the study range of 0.5 - 1.5 mL/min.

Detection wave length

The UV absorption spectrum of the drug was taken in methanol and the λ max found to be at 263nm. Hence detection of the drug was made at 263 nm.

Retention time of Clofarabine:

A model chromatogram showing the separation of Clofarabine is presented in Fig 2.1.1. Under the above optimized conditions a retention time of 5.578 min was obtained for Clofarabine. After a thorough study of the various parameters the following optimized conditions mentioned in Table 2.1.2 were followed for the determination of Clofarabine in bulk samples and pharmaceutical formulations.

Chromatogram of Clofarabine

Linearity and Construction of calibration curve

The quantitative determination of the drug was accomplished by an external standard method. The mobile phase was filtered through a 0.45μ membrane filter before use. The flow rate of the mobile phase was adjusted to

Fig 2.1.1. A Model Chromatogram showing the separation of Clofarabine peak from pure drug.

Fig 2.1.2. Linearity Plot for the drug Clofarabine

Linearity of the peak area response was determined by taking measurements at seven concentration points (six replicates at each point). Working dilutions of Clofarabine in the range of 10- 30 µg/mL were prepared by taking suitable aliquots of the working standard solutions in different 10 mL volumetric flasks and diluting up to the mark with the mobile phase. Twenty microlitres of the dilutions was injected each time into the column at a flow rate of 1 mL/min. Each dilution was injected six times into the column. The drug in the eluents was monitored at 263 nm and the corresponding chromatograms were obtained. From these chromatograms, the mean peak areas were noted and a plot of concentrations over the peak areas was constructed. The regression of the plot was computed by least square regression method. The linear relationship was found to be of 10-30 µg/mL between the concentration of Clofarabine and peak area. This regression equation was later used to estimate the amount of Clofarabine in pharmaceutical dosage forms. The linearity plot was shown in the Fig. 2.1.2 and the calibration data and regression parameters are reported in Table 2.1.3 and 2.1.4

Niethod				
Concentration of Clofarabine (µg/mL)	Mean Peak Area(n=6)			
10	283892			
15	427215			
20	588407			
25	735108			
30	862609			

Table 2.1.3. Calibration data of the proposed HPLC Method

Table 2.1.4. Regression characteristics of the linearity plot of Clofarabine

Parameter	Value
Linearity Range (µg)	10-30
Slope (a)	29306
Intercept (b)	-6684.6
Correlation coefficient (γ)	0.9999
Regression equation	y = 29306x-6684.6

VALIDATION OF THE PROPOSED METHOD

The method was validated in compliance with ICH²⁷ guidelines. The parameters determined for validation are specificity, precision, accuracy, robustness, LOD, LOQ, system suitability and stability of analytical solution.

Specificity

The method specificity was assessed by comparing the chromatograms and UV scans obtained from the drug and the most commonly used excipient mixture with those obtained from blank solution. The blank solution is prepared by mixing the excipients in the mobile phase without the drug. The drug to excipient ratio used was similar to that in the commercial formulations. The

commonly used excipients in formulations like lactose, starch, microcrystalline cellulose, ethyl cellulose, hydroxyl propyl methylcellulose, magnesium stearate and colloidal silicon dioxide were used for the study. The mixtures were filtered through 0.45μ membrane filter before injection. The absence of additional peaks in the chromatogram indicates non interference of the commonly used excipients in the tablets and hence the method is specific.

Precision

Precision is the degree of repeatability of an analytical method under normal operational conditions. The precision of the method was studied in terms of repeatability (intraday assay) and intermediate precision (inter-day assay). The intra-day and inter-day variation for determination of Clofarabine was carried out at three different concentration levels 10, 20, 30 µg/mL level. The percent relative standard deviation (% RSD) values as presented in the Table 2.1.5 shows that the method provides acceptable (<2) intraday and inter-day variation.

Accuracy

Accuracy of the method was evaluated by standard addition method. An amount of the pure drug in its solution form corresponding to 80, 100 and 120 % levels has been added to the pre analysed working dilution (25 μ g) of the drug. The sample solutions were analysed in triplicate at each level as per the proposed method. The percent individual recovery and %RSD for recovery at each level are calculated. The results are tabulated (Table 2.1.6). Satisfactory recoveries ranging from 100.78 to 99.86% were obtained with the proposed method. This indicates that the method is accurate.

Table 2.1.5. Precision of the proposed method

Concentration of	Intra-day Precision			Inter-day Precision		
Clofarabine (µg/mL)	Mean Amount found	Percent Amount found	Percent RSD	Mean Amount found	Percent Amount found	Percent RSD
10	284317	933.43	0.3	284442	1006.1	0.3
20	589233	587.69	0.09	588702	345.26	0.05
30	859393	4226.8	0.491	860990	825.90	0.09

Table 2.1.6. Accuracy data	(Triplicate values at 80,	100 aı	nd 120	percent	levels)

Spike	Conc µg/ml	Conc µg/ml	Amount	0/ Decovery	Mean %
Level	Amount added(pure)	Amount added (formulation)	found	70 Necovery	recovery
	8	10	7.851	101.88	
80%	8	10	7.864	101.77	101.78
	8	10	7.862	101.75	
100%	10	10	10.030	99.68	
	10	10	10.023	99.72	99.77
	10	10	10.022	99.77	
120%	12	10	12.176	98.55	
	12	10	12.144	98.81	99.86
	12	10	12.158	98.70	

Robustness

A study was conducted to determine the effect of deliberate variations in the optimized chromatographic conditions like composition of the mobile phase, flow rate, column oven temperature and mobile phase pH. The system suitability parameters were compared at the effected changes keeping all other parameters constant. The assay, tailing factor and the number of theoretical plates were evaluated. The results were found to be within the allowed limits which indicate that the method is specific.

Variations in the pH of the mobile phase

The effect of variation in the pH of the mobile phase was evaluated at ± 0.2 levels. The system suitability results were found to be within the limits as shown in the table 2.1.7.

P ^H of the mobile phase	Peak area	average	% RSD
	588677		
3.4	588689	588718	0.01%
	588788		
	588766		
3.8	588778	588807	0.01%
	588879		

Variations in flow rate

A study was conducted to determine the effect of variation in flow rate (\pm 10% of optimum flow). The system suitability parameters were evaluated at 0.9 mL/min. and 1.1 mL/min. The results were within the acceptance criteria. Hence the allowable variation in flow rate is 0.9 mL/min to 1.1 mL/min.

Variations in column temperature

A study was conducted to determine the effect of variation in column oven temperature at 28° C and 31° C. The system suitability results were found to be within the limits for both column temperatures.

<i>Temperature</i> of the column (⁰ c)	Peak area	Average	% RSD
	588678		
28	588772	588780	0.18%
	588892		
	588645		
31	588772	588797	0.31%
	588974		

Limit of Detection and Limit of Quantification

Limit of detection (LOD) is defined as the lowest concentration of analyte that gives a measurable response. LOD is determined based on signal to noise ratio (S/N) of three times typically for HPLC methods. The limit of quantification (LOQ) is defined as the lowest concentration that can be quantified reliably with a specified level of accuracy and precision. It is the lowest concentration at which the precision expressed by an RSD of less than 2%. In this study the analyte response is 10 times greater than the noise response. For this study six replicates of the analyte at lowest concentration in the calibration range were measured and quantified. The LOD and LOQ of Clofarabine obtained by the proposed method were Average Baseline Noise obtained from Blank = 38.56μ V Signal Obtained from LOD solution = 0.00896μ V LOD = $3.3 \times \sigma/s$ = $3.3 \times 0.00896/38.56$ = 0.000766LOQ = $10 \times \sigma/s$ = $10 \times 0.00896/38.56$

= 0.02323

System precision and System suitability

System precision and system suitability studies were carried out by injecting six replicates of the working standard solution. The % RSD for the areas obtained was calculated. The data presented in Table 2.1.9 establishes reproducible performance of the instrument. The system suitability parameters are given in Table 2.1.10. The percent RSD for peak area response for six replicate injections should not be more than one.

Table 2.1.9. System precision data

Injection No.	Peak area	Average	SD	%RSD
1	587847			
2	587794			
3	587805	500706	167 225	0.080/
4	588546	200/00	407.223	0.08%
5	588642			
6	588782			

Table 2.1.10. System suitability parameters

Parameters	Values
Theoretical plates (n)	4960
Plates per meter (N)	9248.4
Tailing factor (T)	1.11
LOD (µg/mL)	0.000766
LOQ (µg/mL)	0.02323

ESTIMATION OF THE DRUG FROM TABLET DOSAGE FORMS

Satisfactory results obtained with the method development for the determination of Clofarabine has prompted the author to attempt its applicability for the estimation of the drug from its formulations.

Assay calculation-:

 $%Assay = \frac{TA}{SA} \times \frac{SW}{100} \times \frac{5}{50} \times \frac{100}{2} \times \frac{P}{100} \times \frac{100}{LA}$ Where,

TA = peak area response due to Clofarabine from sample SA = peak area response due to Clofarabine from standard SW = Weight of Clofarabine working standard taken in mg P = purity of Clofarabine working standard taken on as is basis

%Assay

=588407/587843x 20/100x5/50x100/2x99.2/100x100 = 99.2%

CONCLUSION

The present study was aimed at developing a simple, precise and accurate HPLC method for the analysis of Clofarabine from tablet dosage forms. The method should be developed mainly based on pka concept of drug and also different mobile phase composition, flow rate, λ_{max} , different columns and column temperature. Clofarabine has two pk_a values that are 12.7and 1.3. Generally pH of buffer solution should be select ± 1 of pk_a value of drug. In this method value pka 2.3 of Clofarabine was selected because in HPLC, column may damage solutions with pH more than 10. So pk_a 12.7 of Clofarabine was eliminated. Then select 2.3 pk_a value of drug and pH should adjust ± 2 of pka and change mobile phase composition also. Finally good peak was obtained at pH 4.5 of buffer and retention time also less than compared to other trials. So the method was optimized at these conditions. A non-polar C₁₈ analytical chromatographic column was chosen as the stationary phase for the separation and determination of Clofarabine. For the selection of the mobile phase a number of eluting systems were examined. Mixtures of commonly used solvents like water, methanol and acetonitrile with or without different buffers in different combinations were tested as mobile phases on a Develosil C₁₈ MG-5(250x4.6mm), $5\mu m$ stationary phase. The choice of the optimum composition is based on the chromatographic response factor, a good peak shape with minimum tailing. A P^H 3.6 buffer Methanol and Acetonitrile in the ratio of 70:15:15 v/v respectively was proved to be the most suitable of all the combinations since the chromatographic peak obtained was better defined and resolved and almost free from tailing. The retention time of the drug was found at 5.578 min.

A good linear relationship (r=0.9999) was observed between the concentrations of Clofarabine and the corresponding peak areas. The linearity range was found to be 10-30 μ g/mL. The regression equation of the calibration curve between concentration of Clofarabine over its peak area was found to be y = 29306x-6684.6 (where y is the peak area and x is the concentration of Clofarabine). The intra-day and inter-day variations in the range of study showed a low coefficient of variation (Table 2.1.5). This reveals that the method is quite precise. The percent recoveries of the drug solutions were studied at three different concentrations levels. The percent individual recovery and the percent RSD values at each level were (100.78 to 99.86%) within the acceptance limits. The drug content in the tablets was quantified by using the proposed method of analysis. The absence of additional peaks in the chromatogram indicates non interference of the commonly used excipients in the tablets and hence the method is specific.

The deliberate changes in the method have not much affected the peak tailing, theoretical plates and the percent assay. This indicates that the present method is robust. The lowest values of LOD and LOQ as obtained by the proposed method indicate the method is sensitive. The working solution of the drug was stable up to 24 hours.

The tailing factor, the number theoretical plates and HETP are in the acceptable limits. Therefore, the proposed

method can be used for routine quality control and analysis of the drug in bulk samples and in tablet dosage forms.

REFERENCES

- Arun Kumar Kalekar, B Ananta Rao, Yaswanth Allamneni, P Dayananda Chary, S Shanth Kumar, Navya Allamneni, Development and Validation of RP-HPLC Method for Estimation of Dasatinib in bulk and its Pharmaceutical formulation, American journal of pharma tech research ,(2013) Vol; (6) P.2249-3387.
- CH. Suma, K. Vasantha, A. Prabhakar Reddy, CH. Ajay Kumar and Buchi N. Nalluri, Simultaneous estimation of phenylephrine hydrochloride and guaifenesin in bulk drug and pharmaceutical dosage forms by RP-HPLC-PDA method, Journal of Chemical and Pharmaceutical Research, (2013), Vol; 5(8) P. 188-194.
- Magharla Dasaratha Dhanaraju, Vankayalu Devendiran ,Sundar, Rajendran, Vijayalakshmi and Vadapalli S Harsha Naveena, Estimation and Validation of Etoposide by RP-HPLC Method in Rat Plasma by Liquid-Liquid Extraction, *American Journalof Phytomedicine Clinical Ttherapeutics*, (2013),Vol;1(2) P.201-207.
- 4. Nataraj K.S, Sivalingachari P, Naveen, S. Sai, Alekhya K, Method Development and Validation for the Estimation of Dasatinib Monohydrate Tablets by RP-HPLC, *Asian journal of research in chemistry*, (2013), Vol ; 6(9), P.859-862.
- 5. Bhairam bhoomaiah et al, RP-HPLC method for the quantification of cladribine in pharmaceutical formulation, *www.experimentjournal.com research article*, (2012), vol; 2 (2), P.93-101.
- Irene Kramer, Long-term stability study of Clofarabine injection concentrate and diluted Clofarabine infusion solutions, *Journal Oncol Pharm Practical*, (2012); Vol; 18(2), P. 213-221.
- Raphael D. Valerio Ricardo M. Silva, Hellencleia P. Cunha, Maria C. A. Lima, Suely L. Galdino, Ivan R. Pitta, Maria Bernadete S. Maia, Development and validation of an LC-UV method for quantification of a new thiazolidinedione (LPSF/AC-23) with antitumor activity in rat plasma, *Journal of the Brazilian Chemical Society*, (2012), Vol;23 P.11-17.
- V.kalyana chakravarthy and D.gowri sankar, stability indicating hplc method for Determination of maravirocandits Degradants impurities in bulk and Pharmaceutical formulation, *http://www. Rasayan journal.com*, (2012), Vol; 5(1), P. 90-105.
- Donnarumma, F. Schober, M. Greilberger, J. Matzi, V. Lindenmann, J. Maier, A., et al. (2011). Method development and validation for the analysis of a new anti-cancer infusion solution via HPLC. *Journal of Separation Science*, (2011), Vol; 34(2), P. 135-41.
- Yongxing Zhao⁻⁻, Jianqing Gao⁻, Hailing Qiao⁻, Hailiang Che, Wenquan Liang, Development and validation of a sensitive reversephase HPLC method to determine intracellular accumulation of liposomal formulation of hydroxycamptothecin, *www.paper.educ.in*, (2011), P.(1-8).
- Yoshiyuki Minamide, et al., A Standard Addition Method Utilizing an Endogenous Substance as an Internal Standard for Quantitating Arabinofuranosylguanosine 5'Triphosphate in Human Peripheral Blood Mononuclear Cells by Lc-Ms/Ms, Japanese Association of Bioanalytical Techniques, (2011), Vol; 5, P.1-5.
- 12. Takahiro Yamauchi, Rie Nishi, Determination of Clofarabine Triphosphate Concentrations in Leukemia Cells Using Sensitive, Isocratic High-performance Liquid Chromatography, *International institute of anti cancer research*, (2011), Vol; 31(9), P.2863-2867.
- Jeanette Kaiser, PharmD, Professor Irene Krämer, "Physico-chemical stability of nelarabine infusion solutions in EVA infusion bags", *European Journal Hospital Pharma Science*, 2011, Vol; 17(1), P.7-12.
- Suresh Kumar GV, Rajendraprasad Y, Development and Validation of Reversed-Phase HPLC Method for Simultaneous Estimation of Rosuvastatin and Fenofibrate in Tablet Dosage Form, *International Journal of Pharm Techniques Research*, (2010), Vol ;2(3), P.206-202.
- Jan Styczynski, Beata Kolodziej, Beata Rafinska, Differential activity of nelarabine a clofarabine in leukaemia and lymphoma cell lines, *Wspolczesna Onkologia*, (2009) Vol; 13(6), P.281–286.
- Wang Juan, Zhang Rong, ZHAO Yan-yan, Lu Lai-Chun, Highperformance liquid chromatography Clofarabine Clofarabine Injection content ,(2009),Vol;18,P. 8-24.
- Peter L. Bonateet al, The distribution, metabolism, and elimination of Clofarabine in rats, *J Oncol Pharm Pract*, (2005), Vol; 33(6), P.739-748.

- Kurtzberg J, Ernst TJ, Keating MJ, Gandhi V, Hodge JP, Kisor DF, 25. Lager JJ, Stephens C, Levin J, Krenitsky T, Elion G, Mitchell BS. Phase I administered on a consecutive 5-day schedule in children and 26. adults with refractory hematologic malignancies. *Journal of Clinical Oncology* (2005), Vol; 23(15), P.3396-3403.
- Berg SL, Blaney SM, Devidas M, Lampkin TA, Murgo A, Bernstein M, Billett A, Kurtzberg J, Reaman G, Gaynon P, Whitlock J, Krailo M, 28. Harris MB, Phase II study of nelarabine in children and young adults with refractory T-cell malignancies, *Journal of Clinical Oncology* 29. (2005), Vol ;23(15), P.3376-3382.
- Parker WB, Secrist JA 3rd, Waud WR, Purine nucleoside 30. antimetabolites in development for the treatment of cancer. *Current Opinion in Investigational Drugs* (2004), Vol; 5(6), P.592-596. 31.
- B.k Sharma, instrumental methods of chemical analysis, introduction to analytical chemistry, 19th ed, goel publishing house, meerut, (2004), P.286-385.
- Gurdeep R. Chatwal, Sharma K and Anand, Instrumental Method of Chemical analysis, 5th Edition, Himalaya publication, New Delhi ,(2008),P.561-567.
- International Conference on Harmonization (ICH) Harmonised Tripartite Guideline, Validation of Analytical Procedures, Text and 34. Methodology, (2005), Q2 (R1).
- Michael E, Schartz IS, Krull. Analytical method development and Validation, 3rd ed. John Wiley & sons, London, (2004), P. 25-46.

- Douglas A Skoog, Donald M west, James Holler F, Fundamentals of analytical chemistry 7th edition, (2004), Vol; 1(13), P. 628-641.
- Frank A settle, hand book of instrumental techniques for analytical chemistry, Pearson edition, (2004), P.147-159.
- PD Sethi. High performance liquid chromatography,1sted, CBS Publishers & Distributers, New Delhi, (2001),P.1-30.
- David G. Watson, Pharmaceutical Analysis, 1st edition, Churchill Livingstone, Harcourt Publishers limited, (1999).
- Beckett A.H and J.B. Stenlake, Practical Pharmaceutical Chemistry, CBS Publishers and Distributers; volume II, (1997), P. 157-160.
- Chasten LG. Pharmaceutical Chemistry. Vol. II. New York: Marcel Dekker Inc; 1996, P. 23-25.
- International conference of Harmonization Guidelines on validation of Analytical Procedures Definitions and Terminology Federal Register, (1995).
- Lough WJ, Wainer IW. High Performance Liquid Chromatography: fundamental principles & practice. Glasgow (UK): Blackie Academic & Professional, (1995), P. 2-28.
- 33. Asian Guideline for Validation of Analytical Procedure Adopted from ICH guideline, Q2A27 (1994) and ICH Q2B, (1994).
 - David CL, Michael Webb. Pharmaceutical Analysis. London: Black well publishing, (1994), P.2-4.