Application of Ultrasound for Lycopen and Beta-Caroten Extraction in Gac Fruit *Momordica Cochinchinensis* Spreng.

Nguyen Phuoc Minh1,*, Tan Thanh Vo2, Truong Nghia Trong3, Dang Van Son4, Luong Nguyet Chau5, Nguyen Thuy Ha6

1Faculty of Chemical Engineering and Food Technology, Nguyen Tat Thanh University, Ho Chi Minh, Vietnam
2NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
3Can Tho University, Can Tho City, Vietnam
4An Giang University, An Giang Province, Vietnam
5Tien Giang University, Tien Giang Province, Vietnam
6Bac Lieu University, Bac Lieu Province, Vietnam

Abstract.
Gac fruit (*Momordica cochinchinensis* Spreng.) has a rich source of bioactive compounds including lycopen and beta-caroten. Various parameters influencing to lycopen and beta-carote extraction were examined including blanching, solvent, solvent: solid, extraction time and temperature under ultrasound, carrier and temperature for drying. Optimal results were clearly shown that the Gac pulp should be blanched under 95ºC in 10 seconds; extraction should be conducted by ethanol 90%, ethanol: solid (2:0.1:0), 60ºC, 8 minutes; vacuum drying should be executed at 60ºC with the support of carrier (0.5 maltodextrin: 0.5 gelatin: 1.0 Gac). Ultrasonic had positive effect on lycopen and beta-caroten extraction and this method could be utilized to obtain the most lycopen and beta-caroten powder.

Keywords: Gac, lycopen, beta-caroten, ultrasonic, blanching, extraction, carrier, drying

I. INTRODUCTION
Natural colorants have the potential to be used as acceptable additives in foods as they are natural and they also have potential health benefits. However, natural pigment compounds usually have poor stability as compared to artificial food colorants, which hinders their usage. Carotenoids are red, orange, or yellow colored oil-soluble terpenoid compounds located in the chloroplasts and chromatoplasts of plants and they have many functions in plants, including light-harvest and photoprotection. When ingested, carotenoids have vitamin A activity, and they have antioxidant properties related to many health benefits, as reviewed by, for example, Krinsky (1989), Kiokias & Gordon (2004) and Jomova & Valko (2013).

Oxidation of carotenoids can be initiated by many oxidizing agents and the oxidation may process via different mechanisms. In food products, carotenoids are very sensitive to heat so processes involving heat treatments should be kept at minimum both for temperature and time, and storage in frozen temperatures is advised for maximum carotenoid stability (Abdel-Aal et al. 2010, Cerón-García et al. 2010, Rubio-Díaz et al. 2010, Wenzel et al. 2010, Cervantes-Paz et al. 2014).

Momordica cochinchinensis Spreng., is called “gac”, and the seed membrane (seed pulp or aril) of the ripe fruit is widely used as a rice colorant due to its intense red color from its high carotenoid content. Total carotenoid concentrations (+standard deviation) were 497 (±154) μg/g fresh material with lycopene dominating and exceeding beta-carotene concentrations by a factor of approximately five (408 μg/g versus 83 μg/g). The alpha-tocopherol concentration in the pulp was 76 μg/g (Le ThuyVuong et al., 2006). Carotenoids from gac fruit aril (*Momordica cochinchinensis* [Lour.] Spreng.) are more bioaccessible than those from carrot root and tomato fruit (JudithMüller-Maatsch et al., 2017). Fruit stored at 4ºC showed both external and internal chilling injury symptoms during storage (Soe Win et al., 2015). The aril of the Gac fruit is processed and the peel is discarded although it contains high levels of carotenoids and phenolic compounds, which could be extracted for commercial use (Hoang V. Chuyen et al., 2017).

Dang Thi Tuyet Nhung et al., (2009) observed changes in carotenoid contents (lycopene and beta carotene) in gac aril. Carotenoid concentrations in the aril remained stable after 1 week but sharply declined after 2 weeks of storage. Le Khac Lam Dien et al., (2013) had a study to develop an understanding of suitable conditions for the processing of Gac fruit, with three pretreatment methods: blanching, blanching in citric acid solution and steaming; as well as to investigate the different ratios of carrier material to find out which one is the adequate ratio to protect carotene in Gac powder. The result shows that steaming in 6 minutes is the best pretreatment method for the protection and maintenance of total carotenoid content in gac powder; and the most appropriate ratio of carrier: Gac is 1: 1 (dry matter) in which the ratio of maltodextrin: gelatin is 0.5: 0.5 (w/w). Le Khac Lam Dien et al., (2014) investigated the changes of total carotenoids content of Gac powder product in accelerated temperature to find out the appropriate temperature and shelf-life of product storage. The result shows that total carotenoid content maintains at 70% in comparing with the beginning content in three months at 10ºC or five months at 5ºC in condition of absent oxygen and light. Carotenoids concentration of gac (*Momordica cochinchinensis* Spreng.) fruit oil was produced using cross-flow filtration technology (Huynh Cang Mai et al., 2014).

Gac fruit pulp was dried by different drying methods including tray drying (40–60 ºC), heat pump-assisted dehumidified drying (40–60 ºC), microwave drying (450–900 W), mixed-mode solar drying and freeze drying. The Modified Henderson model presented the best fit of desorption isotherms. New model proposed was the best...
drying model. Quality evaluation by β-carotene, lycopene, lutein, total phenolics and antioxidant activity revealed that heat pump-assisted dehumidified drying at 60 °C provided the highest lutein, total phenolics and antioxidant activity and could reduce drying time by 25 % and increased lutein, total phenolics and antioxidant activity by 12.6 %, 32.0 % and 0.3 %, respectively and is more promising drying method for gac fruit pulp (Wittawat Trirattanapikul, Singhanat Phoungchandang, 2016). Extraction of lycopene from gac fruit (Momordica cochinchinensis spreng) and preparation of nanolycopene was investigated. The results showed that the suitable drying temperature for Gac aril was 60-70 °C. The suitable solvents for lycopene extraction were dichloromethane or chloroform. The lycopene content in dried Gac aril is about 0.28-0.46 %. Nanolycopene was prepared successfully by freeze-dried method, with relatively small particles size of 40-60 nm. Nanolycopene is relatively stable in the inert environment in the presence of antioxidants such as butylated hydroxytoluene (BHT) (Ho Thi Oanh et al., 2017). In the present study, we examined different parameters influencing to lycopene and beta-carotene extraction such as blanching, solvent, solvent: solid, extraction time and temperature under ultrasound, carrier and temperature for drying.

II. MATERIALS AND METHOD

2.1 Material
We collected Gac fruit in Mekong river delta, Vietnam. They must be cultivated following VietGAP to ensure food safety. After harvesting, they must be conveyed to laboratory within 8 hours for experiments. Fruits was washed thoroughly under turbulent washing to remove dirt, dust and adhered unwanted material. Besides Gac fruits we also used other materials during the research such as ethanol, acetone, ethyl acetate, maltodextrin, gelatin, DMSO. Lab utensils and equipments included oven, ultrasonicator, vaccum dryer, centrifugator, water bath.

Figure 1. Gac (Momordica cochinchinensis)

2.2 Researching procedure
2.2.1 Effect of blanching on lycopen and beta-caroten extraction (%)
Different blanching conditions were performed (100 °C, 5 seconds; 95 °C, 10 seconds; 90 °C, 15 seconds; 85 °C, 20 seconds) to verify the effectiveness (% recovery) of blanching to lycopene and β-carotene extraction.

2.2.2 Effect of different solvents on lycopene and beta-caroten extraction (%)
Different solvents (water, ethanol, acetone, ethyl acetate) were used to examine the effectiveness (% recovery) of lycopene and β-carotene extraction.

2.2.3 Effect of solvent ratio: material on lycopene and beta-caroten extraction (%)
Different ratios of solvent: solid (1:0:1.0, 1.5:1.0; 2.0:1.0; 2.5:1.0; 3.0:1.0) were verified to demonstrate the effect of ratio between solvent and material on the effectiveness (% recovery) of lycopene and β-carotene extraction.

2.2.4 Effect of extraction temperature by ultrasonic combination with solvent on lycopene and beta-caroten recovery (%)
Different temperature conditions (30°C, 40°C, 50°C, 60°C, 70°C) under ultrasonic combined solvent were examined to prove the effectiveness (% recovery) of lycopene and β-carotene extraction.

2.2.5 Effect of extraction interval by ultrasonic combination with solvent on lycopene and beta-caroten recovery (%)
Different time interval of ultrasonic treatment (2 minutes, 4 minutes, 6 minutes, 8 minutes, 10 minutes) were investigated to verify the effectiveness (% recovery) of lycopene and β-carotene extraction.

2.2.6 Effect of ratio of carrier for drying
Different ratios of carrier: gac (1 maltodextrin: 1 gac; 1 gelatin: 1 gac; 0.5 maltodextrin: 0.5 gelatin: 1 gac) were demonstrated to show the effectiveness of drying to lycopene and β-carotene recovery (%).

2.2.7 Effect of drying temperature
Vaccum drying was applied at different temperature (50°C, 55°C, 60°C, 65°C, 70°C) to the final moisture content of dried powder 6 ± 1%.

2.3 Physico-chemical and biological analysis
Lycopene and β-carotene (µg/g) analysis was performed by Apinya Bhumsaidon, Montip Chamchong (2016). One gram of minced or ground gac aril was put in a test tube. Then, 10 mL of the mixed solvents of acetone and hexane in the ratio 4:6 (volume per volume) were added and mixed well using a spatula. Two other concentrations of extracted matter were made in the same way by adding 14 mL and 18 mL, respectively, of mixed solvent to 1 g of minced arils. The dilutions were selected to be just below the capability of the absorption range of the UV–visible spectrophotometer.

2.4 Statistical analysis
The experiments were run in triplicate with three different lots of samples. Data were subjected to analysis of variance (ANOVA) and mean comparison was carried out using Duncan’s multiple range test (DMRT). Statistical analysis was performed by the Statgraphics Centurion XVI.

III. RESULT & DISCUSSION

3.1 Phytochemical composition in Gac (Momordica cochinchinensis)
Phytochemical composition such as lycopene and beta-carotene in fresh Gac pulp was analyzed. Result was clearly depicted in table 1 representing that Gac pulp was suitable for utilization to collect this healthy pigment.

Table 1. Phytochemical composition in Gac (Momordica cochinchinensis)

<table>
<thead>
<tr>
<th>Major composition</th>
<th>Lycopene</th>
<th>β-carotene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value (µg/g)</td>
<td>415.29±0.03</td>
<td>94.45±0.02</td>
</tr>
</tbody>
</table>

Note: the values were expressed as the mean of three repetitions; the same characters (denoted above), the difference between them was not significant (α = 5%).
3.2 Effect of blanching on lycopene and beta-carotene recovery (%)

Different blanching conditions were performed (100°C, 5 seconds; 95°C, 10 seconds; 90°C, 15 seconds; 85°C, 20 seconds) to verify the effectiveness (% recovery) of blanching to lycopene and beta-carotene. Results were depicted in table 2.

Haecheon Ahn, Eunok Choe (2015) examined the effects of blanching and drying on pigments and antioxidants of daraesoon. Blanching caused a significant (p<0.05) increase in the β-carotene content to 4,953.4 mg/kg from 4,590.5 mg/kg, compared with controls.

3.3 Effect of different solvents on lycopene and beta-carotene recovery (%)

Different solvents (water, ethanol 90%, acetone, ethyl acetate) were used to examine the effectiveness (% recovery) of lycopene and beta-carotene extraction. Results were elaborated in table 3.

Shurook Mohammad Kadhim Saadedin et al., (2017) investigated three different organic solvents mixture, Ethanol/ethyl acetate (6:4), Hexane/ethyl acetate, Ethanol (2:1:1), Hexane/acetone/Ethanol (2:1:1) and 100% Hexane to find the solvents that extracts the highest lycopene and β-carotene from Gac aril fruit powders. Result showed that the combination of ethanol / ethyl acetate (6:4) had the best extraction efficiency for lycopene (40640 μg/g) while Hexane/acetone/Ethanol (2:1:1) had the best extraction efficiency for β-carotene (2912 μg/g).

3.4 Effect of solvent ratio: material on lycopene and beta-carotene recovery (%)

Different ratios of solvent: solid (1.0:1.0, 1.5:1.0; 2.0:1.0; 2.5:1.0; 3.0:1.0) were verified to demonstrate the effect of ratio between solvent and material on the effectiveness (% recovery) of lycopene and beta-caroten extraction. Results were elaborated in table 4.

Dipen Pandya et al., (2017) carried out the optimization of the solvent extraction process for the maximum recovery of lycopene from tomato pomace by selecting the suitable solvent system, temperature-time combination and feed to solvent ratio, i.e. Acetone: Ethyl acetate (1:1), 40°C/5hr and 1.30(w/v). The maximum lycopene was extracted using optimized solvent extraction process and had the lycopene content 611.105mg/100g, refractive index1.37604 and colour value 5.59L*, 8.00a*, 6.14b*. The storage of lycopene extract at refrigerated condition was found safe for maintaining its lycopene content. There was just 2.6% reduction in lycopene content after 60 days of storage at refrigerated condition.

<table>
<thead>
<tr>
<th>Table 2. Effect of blanching to lycopene and beta-carotene extraction recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blanching</td>
</tr>
<tr>
<td>Lycopene extraction recovery (%)</td>
</tr>
<tr>
<td>Beta-carotene extraction recovery (%)</td>
</tr>
</tbody>
</table>

Note: the values were expressed as the mean of three repetitions; the same characters (denoted above), the difference between them was not significant (α = 5%).

<table>
<thead>
<tr>
<th>Table 3. Effect of different solvents on lycopene and beta-carotene extraction recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solvent</td>
</tr>
<tr>
<td>Lycopene extraction recovery (%)</td>
</tr>
<tr>
<td>Beta-carotene extraction recovery (%)</td>
</tr>
</tbody>
</table>

Note: the values were expressed as the mean of three repetitions; the same characters (denoted above), the difference between them was not significant (α = 5%).

<table>
<thead>
<tr>
<th>Table 4. Effect of solvent ratio: material on lycopene and beta-carotene extraction recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solvent: solid</td>
</tr>
<tr>
<td>Lycopene extraction recovery (%)</td>
</tr>
<tr>
<td>Beta-carotene extraction recovery (%)</td>
</tr>
</tbody>
</table>

Note: the values were expressed as the mean of three repetitions; the same characters (denoted above), the difference between them was not significant (α = 5%).

<table>
<thead>
<tr>
<th>Table 5. Effect of extraction temperature by ultrasonic combination with solvent on lycopene and beta-carotene recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraction temperature (°C)</td>
</tr>
<tr>
<td>Lycopene extraction recovery (%)</td>
</tr>
<tr>
<td>Beta-carotene extraction recovery (%)</td>
</tr>
</tbody>
</table>

Note: the values were expressed as the mean of three repetitions; the same characters (denoted above), the difference between them was not significant (α = 5%).
3.5 Effect of extraction temperature by ultrasonic combination with solvent on lycopene and beta-caroten recovery (%)

Different temperature conditions (30°C, 40°C, 50°C, 60°C, 70°C) under ultrasonic (37 kHz) combined solvent were examined to prove the effectiveness (%) recovery of lycopene and beta-caroten extraction. Results were elaborated in table 5.

Seher Kumcuoglu et al., (2014) studied the extraction yield of lycopene from tomato paste processing wastes by application of ultrasound assisted extraction (UAE) was compared with conventional organic solvent extraction (COSE) method. BHT (butylated hydroxytoluene) 0.05% (w/v) added hexane:acetone:ethanol (2:1:1) mixture was used as solvent. Three different solvent solid ratios; 50:1, 35:1 and 20:1, (v/w) were used in both COSE and UAE.

T. Yilmaz et al., (2016) investigated the ultrasound-assisted extraction (UAE) of lycopene and beta-carotene from tomato-processing wastes. Hexane: acetone: ethanol (2:1:1 v/v/v) including 0.05% (w/v) butylated hydroxyl toluene (BHT) was used as a solvent, with 1:35 w/v solid liquid ratio at 15±5°C. Ultrasonic power (50, 65, 90W) was applied in UAE for 1-30 min. Conventional organic solvent extraction (COSE) was applied under the same solvent and temperature conditions for 10-40 min. UAE was more effective and required a shorter time than COSE. Maximum lycopene and beta-carotene yields were obtained using 90W ultrasonic power for 30 and 15 min, respectively.

3.6 Effect of extraction interval by ultrasonic combination with solvent on lycopene and beta-caroten recovery (%)

Different time intervals of ultrasonic treatment (2 minutes, 4 minutes, 6 minutes, 8 minutes, 10 minutes) were investigated to verify the effectiveness (%) recovery of lycopene and beta-caroten extraction. Results were elaborated in table 6.

Haecheon Ahn, Eunok Choe (2015) examined the effects of blanching and drying on pigments and antioxidants of daraesoon. Drying of blanched daraesoon caused a significant (p<0.05) loss of chlorophylls and carotenoids, and carotenoids were more affected by light than chlorophylls.

3.7 Effect of ratio of carrier (maltodextrin) for drying

Different ratios of carrier: Gac (1 maltodextrin: 1 gac; 1 gelatin: 1 gac) were used in both COSE and UAE. COSE experiments were performed at 20°C, 40°C and 60°C for 10, 20, 30 and 40 min. 50, 65 and 90 W of ultrasonic power were applied in UAE for 1, 2, 5, 10, 15, 20 and 30 min. Lycopene contents of the samples were determined by spectrophotometric method. The effects of different factors, including the temperature, solvent solid ratio and ultrasonic power on lycopene yield were investigated. It was determined that the most efficient application for COSE was extracting samples by 50:1 solvent solid ratio at 60°C for 40 min run, for UAE, 35:1 (v/w) solvent solid ratio, 90 W ultrasonic power for 30 min run. It was showed that UAE of lycopene requires less time, lower temperature and lower solvent than COSE.

3.8 Effect of drying temperature and time

Vacum drying was applied at different temperature (50°C, 55°C, 60°C, 65°C, 70°C) to the final moisture content of dried powder 6 ± 1%. Results were elaborated in table 8. Andrea Mendelová et al., (2013) evaluated the effect of drying temperature on changes of the content of lycopene in selected varieties of tomato. Drying was performed at 45°C.
IV. CONCLUSION

Gac (Momordica cochinchinensis, Spreng) is a popular fruit in Vietnam. Studies on physiological effects of lycopene and beta carotene have reported that the consumption of lycopene and beta carotene can reduce the incidence of several diseases, including eye diseases, heart diseases and cancers. We have successfully optimized different aspects affecting to lycopene and beta-carotene extraction such as blanching, solvent, solid, extraction time and temperature under ultrasound, carrier and temperature for drying. Natural lycopene and beta-carotene colorant has the potential to be used as acceptable additive in foods as natural and potential health benefits.

REFERENCES

