

Comparison of lean body mass& body fat mass in pre and postmenopausal women in Baghdad teaching hospital with their impact on bone mineral density

Ali Hussein Al-Hafidh¹ Gassan thabet saeed² Faiq l.Goral²

¹/College of health and Medical technology – Baghdad /Iraq

²/College of Medicine, University of Baghdad/Iraq

Abstract:

Background: the body composition is changed with aging involving fat mass (FM), lean mass (LM) and bone mineral density(BMD). **Objectives:** to evaluate the changes of fat mass, lean mass and bone mineral density in postmenopausal subjects and to determine whether fat mass or lean mass affect bone mineral density.

Methods: A case control study to determine the differences between FM&LM in pre and postmenopausal control study was carried out for a period of one year in Baghdad teaching hospital

Results:a highly significant lower BMD of lumbar spine and both femurs were found in postmenopausal group. Although the mean of areas of ribs, lumbar spine, pelvis, legs and total body fat mass were higher in postmenopausal subjects but no significantly differences of body fat mass gcm² measured by DXA between the postmenopausal and premenopausal subjects. A highly significant difference of LM g/cm² measured by DXA between the postmenopausal and premenopausal subjects (p-value0.0004-0.001) in measurements of total LMand anatomical areas.Significant effects were found of total FM and total LM on BMD of lumbar spine and neck of both femurs in postmenopausal subjects but LM had more effect than FM.

Conclusion: A highly significant lower BMD and LM were found with increased adiposity among postmenopausal women.Both FM and LM affect BMD of lumbar spine and both femurs but LM had more effect.

Recommendations :mechanical loading by exercises leading to a positive relationship with BMD. **Keywords:**bone mineral density, fat mass, lean mass, postmenopausal

INTRODUCTION:

Aging, an inevitable and normal physiological process and commonly associated with changes of body composition that characterized by decrease in lean mas (LM) and bone mineral density(BMD) with increment of adiposity and higher incidence of osteoporosis particularly in postmenopausal $\mathsf{women}^{(1\text{-}3)}$.Body weight is mainly made up of two components: fat mass (FM) and LM; or fat-free mass. The relative impact of each of the two components on BMD variation is extremely contentious⁽⁴⁾. Obesity and osteoporosis are major health problem with rising prevalence worldwide and share common features such as multifactorial etiology and consequent high health care costs with concomitant clinical complications⁽⁵⁾.A diagnosis of osteoporosis often is established by measurement of BMD by dual X-ray absorptiometry (DXA) which is the first choice and golden clinical modality for the diagnosis and severity assessment of osteoporosis ⁽⁵⁻⁷⁾. DXA is widely available, fast, simple, noninvasive technique with high accuracy and reproducibility and presently the scanning of hip and spine used as the gold standard by clinicians^(8,9).BMD is affected by numerous factors, including body mass (10). A number of studies have revealed that higher body mass or body mass index (BMI) relates with higher BMD (4, 11).Moreover, low body mass is known as an important risk factor for osteoporosis (12, 13). However, there is some suggestion that the direct relationship between body mass and BMD does not essentially reflect an advantageous effect of fat mass(FM) on bones (5).On the other hand, it is well recognized that lean mass applies a positive effect on BMD, principally by consequences of mechanical loading on bones (14-16). Other researchers have concluded that both LM and FM were significantly affects BMD (4). The effect of FM alone on the BMD or in combination with LM remains controversial and an important argument has established and concentrated on whether being the overweight and obesity can have protective or unfavorable effect on health of human skeleton. To best of our knowledge, this is first study in Iraq discuss the relationship of FM and LM with BMD in women.

PATIENTS AND METHODS

This case control study was conducted on (120) postmenopausal female subjects with mean age 59.93±6.88 and mean BMI 32.31±5. 27 and (120) premenopausal female subjects with mean age 46.36±4.07 and mean BMI 31.9±5.40 with total of 240 females were randomly selected from the patients attending DXA unit in Baghdad teaching hospital from November 2016 to December 2017. The postmenopausal female subjects were defined as individuals with menopause at least one year since the last natural menstruation (17,18).Osteoporosis was diagnosed according to WHO criteria T-score was used for postmenopausal subjects and Z-scores for premenopausal subjects (19,20). Women were excluded from the study if they had malignancy, chronic inflammatory, endocrine diseases, renal impairment, gastrointestinal diseases, previous gastrointestinal surgery environmental factors, and diseases with altered activity or patients on one or more of the following medications: warfarin, heparin, vitamin K, thiazolidinedione, thiazide diuretics, cancer chemotherapy, anticonvulsants, barbiturates, estrogen, GnRH (gonadotropin releasing hormone agonists), methotrexate, glucocorticoids, vitamin D or osteoporosis medications. Pregnant and lactating premenopausal individuals at time of BMD measurement also excluded from this study .The study protocol was approved by the ethics committee of Baghdad University, informed consents were taken from the participants, and they were assured of privacy of data and to be used only for scientific research.Demographic data were collected and family history of osteoporosis or fragility fracture and history of pervious personal fragility fracture were recorded. Weight and height were measured with standard apparatus in DXA unit by measuring the weight with tape measure from the side of the patient without shoes in standing position, weight was taken by electronic scale and the patient in standing position with light clothes and without shoes . Blood samples were aspirated for complete blood picture, fasting blood sugar, serum calcium, serum phosphorus, renal function test, liver function test. DXA scanning of lumbar spine (L1-4) and both femurs by Strous densitometer with pencil-beam technology.Assessment of body composition by same equipment to measure total and anatomical FM and LM.

RESULTS

A total of 240 subjects were included in this study, they were divided into 2 groups: the first group included 120 postmenopausal subjects and the second group included 120 premenopausal subjects. Significant differences of bone mineral density of lumbar spine and both femurs between postmenopausal and premenopausal subjects as shown in table (1). Areas of femoral neck and total hip for both femurs were measured. T-score was used for postmenopausal subjects and Z-score for premenopausal subjects.

Although the mean of areas of ribs, lumbar spine, pelvis, legs and total body fat mass were higher in postmenopausal subjects but no significantly differences of body fat mass g/cm² measured by DXA between the postmenopausal and premenopausal subjects.

Moreover; the mean of areas of arms and dorsal spine were higher in premenopausal subjects as shown in table (3).

Significant effectswere found of total body fat mass and total lean body mass on BMD of lumbar spine and neck of both femurs in postmenopausal subjects with effect of LM more than FMas shown in table (4).

A highly significant differences of lean body mass g/cm² measured by DXA between thepostmenopausal and premenopausalsubjects (p-value0.0004-0.001) in all areas of measurements:left and right arms,left and rightribs, dorsal and lumbar, pelvis, left and right legs and total lean body mass as shown in table (2).

Table (1): Comparison of bone mineral density of L	mbar spine and femurs in	pre and postmenopausal su	bjects.
--	--------------------------	---------------------------	---------

	WHO	Postmenopausal		Premenopausal		Total		
DXA scanned area	classification of BMD	N0	%	N0	%	N0	%	P.V
Total Lumbar spine BMD	normal	19	15.83	86	71.67	105	43.75	
	osteopenia	64	53.33	30	25.00	94	39.17	0.0001*
(g/cm ²)	osteoporosis	37	30.83	4	3.33	41	17.08	
	Total	120	100.00	120	100.00	240	100.00	
	Normal	51	42.50	116	96.67	167	69.58	
Right femoral neck BMD	Osteopenia	65	54.17	4	3.33	69	28.75	0.0001*
(g/cm ²)	Osteoporosis	4	3.33	0	0	4	1.67	
	Total	120	100.00	120	100.00	240	100.00	
	Normal	55	45.83	110	91.67	165	68.75	
Total right hip BMD	Osteopenia	61	50.83	10	8.33	71	29.58	0.0001*
(g/cm ²)	Osteoporosis	4	3.33	0	0	4	1.67	
	Total	120	100.00	120	100.00	240	100.00	
	Normal	49	40.84	114	95.00	163	67.91	
Left femoral neck BMD (g/cm ²)	Osteopenia	67	55.83	6	5.00	73	30.42	0.0001*
	Osteoporosis	4	3.33	0	0	4	1.67	
	Total	120	100.00	120	100.00	240	100.00	
Total left hip BMD (g/cm²)	Normal	54	45.00	114	95.00	168	70.00	
	Osteopenia	62	51.67	6	5.00	68	28.33	0.0001*
	Osteoporosis	4	3.33	0	0	4	1.67]
	Total	120	100.00	120	100.00	240	100.00	

Table (2): Comparison of lean body mass in pre and postmenopausal subjects.

Lean body mass g/cm ²	Groups	No	Mean	SD	p-value	
Left armg/cm ²	postmenopausal	120	4.09	0.42	0.0001*	
	premenopausal	120	4.42	0.45	0.0001*	
Right armg/cm ²	postmenopausal	120	4.16	0.44	0.0001*	
	premenopausal	120	4.58	0.59	0.0001*	
Left ribg⁄cm²	postmenopausal	120	9.90	0.74	0.0001*	
	premenopausal	120	10.42	0.90	0.0001*	
Dight rib of m?	postmenopausal	120	9.89	0.86	0.0001*	
Right ribgcm ²	premenopausal	120	10.57	0.95	0.0001*	
Dorsal spineg/cm ²	postmenopausal	120	11.69	0.96	0.0001*	
	premenopausal	120	12.47	1.04		
Lumbar spineg/cm ²	postmenopausal	120	13.43	1.20	0.001*	
	premenopausal	120	13.97	1.17	0.001*	
pelvisg/cm ²	postmenopausal	120	10.88	1.15	0.004*	
	premenopausal	120	11.30	1.02		
Left legg/cm ²	postmenopausal	120	5.60	0.53	0.0001*	
	premenopausal	120	6.01	0.52	0.0001*	
Right legg/cm ²	postmenopausal	120	5.53	0.53	0.0001*	
	premenopausal	120	5.92	0.52		
Total lean body massg/cm ²	postmenopausal	120	7.01	0.57	0.0001*	
	premenopausal	120	7.46	0.58	0.0001*	
Total loop body (kg)	postmenopausal	120	38.86	5.56	0.0001*	
rotar lean body (kg)	premenopausal	120	42.62	5.16	0.0001*	

Table (3): Comparison of body fat mass in pre and postmenopausal subjects.

Body fat mass g/cm ²	Groups	No	Mean	SD	p-value	
Left armg/cm ²	postmenopausal	120	3.62	1.04	0.027	
	premenopausal	120	3.63	1.09	0.927	
Right armg/cm ²	postmenopausal	120	3.71	0.85	0.178	
	premenopausal	120	3.88	1.01		
Laft rihahm?	postmenopausal	120	8.09	1.94	0.027	
Lett Högem-	premenopausal	120	8.07	2.44	0.937	
	postmenopausal	120	8.19	1.90	0.741	
Right ribgcm ²	premenopausal	120	8.11	2.34	0.741	
	postmenopausal	120	7.96	1.72	0.931	
Dorsar spinegent-	premenopausal	120	7.98	2.23		
	postmenopausal	120	10.14	2.55	0.290	
Lumbar spinegen-	premenopausal	120	9.73	3.32		
pelvisg/cm ²	postmenopausal	120	9.71	2.29	0.305.	
	premenopausal	120	9.38	2.74		
Left legg⁄cm²	postmenopausal	120	5.18	0.95	0.728	
	premenopausal	120	5.13	1.09		
Right legg/cm ²	postmenopausal	120	5.43	0.94	0.847	
	premenopausal	120	5.41	1.08		
Totalbody fat massabm ²	postmenopausal	120	6.21	1.27	0.927	
1 otarbody rat massgem ²	premenopausal	120	6.16	1.54	0.637	

Table (4): Correlation oftotal body fat mass and total lean body mass with bone mineral density inpostmenopausal subjects.

Total body fat mass (kg)	Mean	Std. Deviation	No	Poorson Correlation	Sig. (2-tailed)
Total body fat mass (kg)	34.83	9.65	120	realson Conclution	
Right femoral neck BMD (g/cm ²)	0.76	0.11	120	0.374(**)	0.0001*
Left femoral neck BMD (g/cm ²)	0.77	0.101	120	0.392(**)	0.0001*
Total Lumbar spine BMD (g/cm ²)	0.84	0.128	120	0.352(**)	0.0001*
Total lean body mass (kg)	38.86	5.56	120	Pearson Correlation	Sig.(2-tailed)
Right femoral neck BMD (g/cm ²)	0.76	0.11	120	0.390(**)	0.0001*
Left femoral neck BMD (g/cm ²)	0.77	0.101	120	0.874(**)	0.0001*
Total Lumbar spine BMD (g/cm ²)	0.84	0.128	120	0.492(**)	0.0001*

** Correlation is significant at the 0.01 level (2-tailed).

DISCUSSION

The body composition is change with aging by a variety of factors; physical activity, nutrition, menopausal status and disease (21). The data of this study confirmed a higher BMD in premenopausal than postmenopausal subjects in consistent with other studies that reporting the BMD of mean total body, lumbar spine, and femoral neck were higher in premenopausal subjects than postmenopausal (5, 22). The current study showed significant diminution of lean mass among postmenopausal subjects in comparison to control group in addition to a lower BMD in agreement with several studies that concluded significant association between sarcopenia and osteoporosis and reported that a low lean mass loss is associated with lower BMD (23,24). The risk of sarcopenia may decrease bone strength by decreasing the mechanical loading to the skeleton. Such reduction of mechanical stimulation may result from reduced maximal force that produced by weak muscles and/or less time of skeleton exposure to mechanical loaded caused by relative immobility of individuals and thus bone formation is reduced (25).We also measured FM in both groups and found a higher mean of body fat mass in postmenopausalsubjects in comparison to premenopausal but statistically not significant and these findings related to high BMI in premenopausal females. After appropriate adjustment of fat mass to BMI it was found a significant difference of fat mass between two groups.Several studies revealed increased adiposity with aging (5, 26, 27). One of the most significant current discussions in assessment of body composition is whether the FM is important than LM as a determining factor of BMD. The current study revealed significant effects of total body fat mass and total lean body mass on BMD of lumbar spine and neck of both femurs in postmenopausal subjects lean mass had more effect than fat mass on BMD as the mean of lean mass was higher than mean of fat mass $(38.86\pm5.56 \text{ vs } 34.83\pm9.65)$ in agreement with other studies that suggested a positive influence of lean mass on BMD (4, 28, 29, 30).

In conclusion: A highly significant lower BMD and LM were found with increased adiposity among postmenopausal women.Both FM and LM affect BMD of lumbar spine and both femurs but LM had more effect.

Recommendations :mechanical loading by exercises leading to a positive relationship with BMD.

References

- Kyle UG, Genton L, Hans D, Karsegard L, Slosman DO, Pichard C. Age-related differences in fat-free mass, skeletal muscle, body cell mass and fat mass between 18 and 94 years. Eur J Clin Nutr 2001; 55:663-72.
- Harbo T, Brincks J, Andersen H. Maximal isokinetic and isometricmuscle strength of major muscle groups related to age,body mass, height, and sex in 178 healthy subjects. Europeanjournal of applied physiology 2012;112:267-275.
- Yoo HJ, Park MS, Yang SJ, Kim TN, Lim KI, Kang HJ, et al. The differentialrelationship between fat mass and bone mineral density by gender andmenopausal status. J Bone Miner Metab 2012; 30:47– 53.
- Ho-Pham LT, Nguyen UD, Nguyen TV. Association between lean mass, fat mass, and bone mineral density: a meta-analysis. J Clin EndocrinolMetab 2014; 99:30–8.

- Chain A, Crivelli M, Faerstein E, Bezerra FF. Association between fat mass and bone mineral density amongBrazilian women differs by menopausal status: The Pro-SaudeStudy.Nutrition 33 (2017) 14–19.
- 6. Lee S and Gallaghere D. Assessment methods in human body composition. CurrOpin Clin NutrMetab Care. 2008; 11(5): 566–572.
- Salamat M, Rostampour N, Shanehsazzadeh S, Tavakoli M, Siavash M, Almasi T. Assessment of bone mineral density with dual energy X-ray absorptiometry in pre-and post-menopausal women. Iranian Journal of Radiation Research. 2008; 6 (2): 103-7.
- Shirvaikar M, Huanga N, Dong XN et al. the measurement of bone quality using gray level co-occurrence matrix textural features. Med Imaging Health Inform. 2016 October; 6(6): 1357–1362.
- Pezzuti IL, Kakehasi AM, Filgueiras MT, Guimarães JAD, Lacerda IAC, Silva IN et al. Imaging methods for bone mass evaluation during childhood and adolescence: an update. J PediatrEndocrinolMetab 2017; 30(5): 485–497.
- Zhu K, Briffa K, Smith A, Mountain J, Briggs AM, Lye S, et al. Gender differences in the relationships between lean body mass, fat mass and peakbone mass in young adults. OsteoporosInt 2014; 25:1563–70.
- Radak TL. Caloric restriction and calcium's effect on bone metabolism andbody composition in overweight and obese premenopausal women. NutrRev 2004; 62:468–81.
- 12. De Laet C, Kanis JA, Oden A, Johanson H, Johnell O, Delmas P, et al. Bodymass index as a predictor of fracture risk: a meta-analysis. OsteoporosInt2005;16:1330–8.
- 13. Reid IR. Fat and bone. Arch BiochemBiophys 2010; 503:20-7.
- Liu-Ambrose T, Kravetsky L, Bailey D, Sherar L, Mundt C, Baxter-Jones A, et al. Change in lean body mass is a major determinant of change in areal bone mineral density of the proximal femur: a 12year observational study. Calcif Tissue Int 2006;79:145–51.
- 15. Leslie WD, Weiler HA, Lix LM, Nyomba BL. Body composition and bone density in Canadian White and Aboriginal women: the First Nations Bone Health study. Bone 2008; 42:990–5.
- Gonnelli S, Caffarelli C, Tanzilli T, Alessi C, Pitinca MT, Rossi S, et al. Theassociations of body composition and fat distribution with bone mineraldensity in elderly Italian men and women. J Clin Densitom 2013;16:168–77.
- 17. Chen Y, Xiang J, Wang Z, XiaoY, Zhang D, Xia Chen X et al. Associations of Bone Mineral Density with Lean Mass, Fat Mass, and Dietary Patterns in Postmenopausal Chinese Women: A 2-Year Prospective Study. PLOS ONE | DOI:10.1371/journal.pone.0137097 September 3, 2015.

- Salamat MR, Salamat AH, Janghorbani M et al. Association between Obesity and Bone Mineral Density by Gender and Menopausal Status. EndocrinolMetab 2016;31:547-558.
- Kanis JA, McCloskey EV, Johansson H, Oden A, Melton LJ 3rd, Khaltaev N. (2008). A reference standard for the description of osteoporosis. Bone. 42(3): 467-75.
- Sözen T, Özişik L and Başaran N Ç et al. An overview and management of osteoporosis. Eur J Rheumatol 2017; 4: 46-56.
- GuoSS,Zeller C, Chumlea WC, and Siervogel RM.Aging, body composition, and lifestyle: the Fels Longitudinal Study.Am J Clin Nutr 1999; 70:405–11.
- 22. Garg N, VijiMol G., Sethi D. An epidemiological study to assess bone mineral density and its association with contributing factors among premenopausal and postmenopausal women in selected villages of District Shimla, Himachal Pradesh, India. Garg N et al. Int J ReprodContraceptObstet Gynecol. 2018 Feb;7(2):487-494.
- 23. Genaro PS, Pereira GA, Pinheiro MM, Szejnfeld VL, Martini LA. Influence of body composition on bone mass in postmenopausal osteoporotic women. Arch GerontolGeriatr. 2010; 51(3):295-8.
- Di Monaco M, Vallero F, Di Monaco R, Tappero R. Prevalence of sarcopeniaand its association with osteoporosis in 313 older womenfollowing a hip fracture. Arch GerontolGeriatr. 2011;52(1):71-4.
- Pereira FB, Leite AF, De Paula AP. Relationship between presarcopenia, sarcopenia and bone mineral density in elderly men. Arch EndocrinolMetab. 2015;59/1:59-65.
- Flegal KM, Carrol MD, Ogden CL, Curtin LR. Prevalence and trends inobesity among US adults, 1999-2008. JAMA 2010:303:235–41.
- Yoo HJ, Park MS, Yang SJ, Kim TN, Lim KI, Kang HJ, et al. The differentialrelationship between fat mass and bone mineral density by gender andmenopausal status. J Bone Miner Metab 2012;30:47– 53.
- Liu-Ambrose T, Kravetsky L, Bailey D, Sherar L, Mundt C, Baxter-Jones A, et al. Change in lean body mass is a major determinant of change in areal bone mineral density of the proximal femur: a 12year observational study. Calcif Tissue Int 2006; 79:145–51.
- Leslie WD, Weiler HA, Lix LM, Nyomba BL. Body composition and bone density in Canadian White and Aboriginal women: the First Nations Bone Health study. Bone 2008; 42:990–5.
- Gonnelli S, Caffarelli C, Tanzilli T, Alessi C, Pitinca MT, Rossi S, et al. The associations of body composition and fat distribution with bone mineral density in elderly Italian men and women. J Clin Densitom 2013;16:168–77.