

Comparison between Isolates Percentage and Antibiotics Activity of Two Main Species of Pathogenic Gram Negative Bacteria Isolated From Urine Samples

Ehsan F. Hussein

University of Sumer/College of Science

Abstract:

Seventy five urine samples have been collected through the period from November/2017 to March/2018 for isolation and identification of the two pathogenic gram negative bacteria Enterobacter spp. and Proteus spp. These bacteria were diagnosed by several types of the biochemical tests. And studied of the comparison between these two bacterial species according to their sensitivity against the antibiotics and percentage of their isolates from urine samples. Some of the antibiotics have activity with significant correlation and differences. The Aztreonam and Novobiocin have highly activity against Enterobacter spp. and Proteus spp. respectively. Also it was found that the isolates percentage of the Proteus spp. was more than the Enterobacter spp. in the urine samples which were 13% and 10% respectively.

Key word: Urinary Tract Infetions, Enterobacter spp., Proteus spp., Antibiotics.

INTRODUCTION

The infections of the urinary tract ranging from simple asymptomatic to difficult symptomatic diseases and this associated with bacteria presence in the urine [1]. This disease type is most commonly caused by the bacteria of the humans in both hospitals and communities conditions [2]. The bacteria of the pathogenic gram negative have ability to causes several types of the nosocomial infections but the Enterobacter spp. and Proteus spp. play a specific role in this type of the infections [3]. The antibiotics types and working methods as well as the mechanisms of the resistance by different types of the bacteria have been identified in the academic departments until recently in the application of the curative [4]. The aminoglycosides, fluoroquinolones, trimethoprim and b-lactams are most important antibiotics classes which can be used in treatment of the urinary tract infections and have high activity against pathogenic gram negative bacteria [5].

The Enterobacteriaceae is the family of the gram negative bacteria which include the Enterobacter species, they live as facultative anaerobic rods shapes and no spore formation [6]. These species associated with infections of nosocomial and as urinary tract opportunistic microbes [7]. The most important opportunistic pathogenic species of the Enterobacter are including E. agglomerans, E. sakazakii, E. gergoviae, E.cloacae, E. amnigenus. E. cancerogenus, E. asburiae, E. dissolvens and E. hormaechei which these species causes several human infections [8]. Theses bacteria can resistant range of the antibiotics by several mechanisms [6]. The most important resistant mechanisms among Enterobacter which is including decrease susceptibility levels of the antibiotics [9].

The family of the Enterobactericeae is a gram negative bacteria, wide distrusted in the environment and causes acquired infections of the hospital as well as urinary tract nosocomial infections [10]. The Proteus bacteria belong to Enterobactericeae and are most common of the urinary tract infections. The Proteus is genus of the facultative and aerobic motile gram negative rods, these bacteria are containing several pathogenic species, which are P. hauseri, P. penneri, P. vulgaris, P. myxofaciens and P. mirabilis [11]. The species of Proteus have ability to resistance several type of the antibiotics in the a worldwide [12]. The species of these bacteria that resist more than one type of the antibiotics called multidrug resistant [13].

MATERIALS AND METHODS

The Seventy five urine samples have been collected from patients in sterile container (tube 10 ml) and used for isolation pathogenic gram negative bacteria, the bacterial types that used in this study

were Enterobacter spp. and Proteus spp. These bacteria were diagnosed by growing on several media and by uses the biochemical tests.

Table: 1. Identification of the isolated bacteria by the	è
biochemical tests	

Biochemical test/ References	Enterobacter species [14].	Proteus species [15].
Gram stain	Negative	Negative
Indol	Negative	Negative
Urease	Negative	Positive
Oxidase	Negative	Negative
Catalase	Positive	Positive
Citrate	Positive	Positive
Methyl Red	Negative	Positive
Vasik proskor	Positive	Positive
H2S	Negative	Positive

Table (1) results of the biochemical tests were used for diagnosis of the Enterobacter species and Proteus species, after growing on the Nutrient, Mac Conkey's and Blood agar plates. This identification is according to the Society of the American Bacteriologist [16].

Antibiotic susceptibility test

The Muller Hinton ager plates were used to determine the antibiotics sensitivity of the Enterobacter spp. and Proteus spp. bacteria. This procedure was done by disc diffusion technique after growing of these bacteria on Muller Hinton ager plats and measuring the antibiotics inhibition zones which were formed after (24 h) by using special scale [17].

Statistical analysis

The result of this study were analyzed through the Statistical Package for Social Science (SPSS) to determine the Mean, Standard Deviation and Standard Error in addition to identify the significant differences between the antibiotic and bacteria by One way Anova through descriptive exclude cases analysis with LSD at 95% confidence and significant level (P-Value=0.05) [18].

RESULTS

Seventy five urine samples have been collect for isolation of the pathogenic gram negative bacteria, these bacteria were Enterobacter spp. and Proteus spp. And study the antibiotics susceptibility patterns by using of the thirteen type of the antibiotics, the results were illustrated in the following figures and tables.

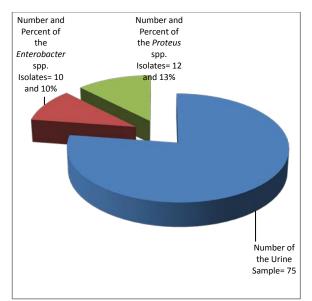


Figure:1. Number and Percentage of the isolated bacteria

Figure (1) the number of the collected urine samples was 75, in addition to the number; percentage of the *Enterobacter* spp. and *Proteus* spp. were 10;10% and 12;13% respectively.

Table (2) the activities of the antibiotics replications measured by millimeter against *Enterobacter* spp. Were the Aztreonam which has high activity with Mean Std. deviation and Std. error equal to 18.2, 3.794 and 1.200 respectively; while the Bacitracin has low activity with Mean Std. deviation and Std. error equal to 3.2, 2.898 and 0.916 respectively.

Table (3) the correlation between antibiotics activity against *Enterobacter* spp. is present between Clindamycin and Trimethoprim; Penicillin-G10 and Oxolinic acid; Penicillin-G10 and Novobiocin; Erythromycin and Amoxicillin; Carbnicillin and Amoxicillin; Amikacin and Amoxicillin. While the other antibiotics have no present correlation. This means, if the antibiotics types have activity with present correlation between them can be used all of the antibiotics types and if no present correlation can be used only the antibiotic type that has activity in treatment of the these bacteria species.

Table: 2. Inhibition zones of the antibiotics types against <i>Enterobacter</i> spp.
Inhibition zones measured by (mm)

No	No. Inhibition zones measured by (mm)								
INO.	Antibiotic types	Mean	Std. Deviation	Std. Error					
1	AX 15 μg = Amoxicillin15 μg	7.9	4.483	1.417					
2	AK 30 µg = Amikacin30 µg	5.9	4.148	1.311					
3	TMP 10 μ g = Trimethoprim10 μ g	9.7	1.888	0.597					
4	ATM 30 μ g = Aztreonam30 μ g	18.2	3.794	1.200					
5	SMZ 25 μ g = Sulfamethoxazole25 μ g	6.3	3.267	1.033					
6	PY 100 μg = Carbnicillin100 μg	4.2	3.794	1.485					
7	NV 30 µg = Novobiocin30 µg	6.8	4.391	1.388					
8	E 15 μg = Erythromycin15 μg	9.4	2.988	0.945					
9	R 40 μ g = Rifaximin40 μ g	9.3	4.667	1.476					
10	P 10 μ g = Penicillin-G10 μ g	6.3	3.433	1.085					
11	OA 2 μ g = Oxolinic acid2 μ g	7.1	4.433	1.401					
12	B 10 μg = Bacitracin10 μg	3.2	2.898	0.916					
13	CC 5 µg = Clindamycin5 µg	4.3	3.529	1.116					

Table:3. Significant Correlations between the antibiotics types against *Enterobacter* spp.

	CC	В	OA	P	R	Е	NV	PY	SMZ	ATM	TMP	AK	AX
	5 µg	10 µg	2 μg	10 µg	40 µg	15 µg	30 µg	100 µg	25 μg	30 µg	10 µg	30 µg	15 µg
CC		R=.059	R=.170	R=028-	R=.172	R=230-	R=.374	R=.329	R=073-	R=.260	R=820-**	R=330-	R=379-
5 μg		Sig=.863	Sig=.616	Sig=.936	Sig=.613	Sig=.495	Sig=.258	Sig=.324	Sig=.832	Sig=.439	Sig=.002	Sig=.321	Sig=.250
В	R=.059		R=489-	R=469-	R=.049	R=070-	R=.190	R=.287	R=315-	R=.211-	R=150-	R=.338	R=.193
10 µg	Sig=.863		Sig=.127	Sig=.146	Sig=.886	Sig=.838	Sig=.577	Sig=.392	Sig=.346	Sig=.534	Sig=.660	Sig=.310	Sig=.569
OA	R=.170	R=.489-		R=.898**	R=145-	R=.139	R=507-	R=.38	R=.051-	R=.024	R=.291-	R=.401-	R=.006-
2 μg	Sig=.616	Sig=.127		Sig=.001	Sig=.671	Sig=.684	Sig=.111	Sig=.242	Sig=.882	Sig=.943	Sig=.386	Sig=.221	Sig=.985
Р	R=.028-	R=.469-	R=.898**		R=373-	R=098-	R=731-*	R=.293	R=187-	R=.187	R=.055	R=394-	R=.044
10 µg	Sig=.936	Sig=.146	Sig=.001		Sig=.258	Sig=.775	Sig=.011	Sig=.382	Sig=.581	Sig=.583	Sig=.872	Sig=.230	Sig=.898
R	R=.172	R=.049	R=.145-	R=373-		R=.579	R=.215	R=.109	R=226-	R=.182	R=.128-	R=.210	R=.088
40 μg	Sig=.613	Sig=.886	Sig=.671	Sig=.258		Sig=.062	Sig=.526	Sig=.750	Sig=.504	Sig=.593	Sig=.709	Sig=.535	Sig=.797
Е	R=230-	R=.070-	R=.139	R=.098-	R=.579		R=.259	R=.387	R=.101	R=.428-	R=.040-	R=.563	R=.603*
15 μg	Sig=.495	Sig=.838	Sig=.684	Sig=.775	Sig=.062		Sig=.443	Sig=.240	Sig=.767	Sig=.189	Sig=.907	Sig=.071	Sig=.049
NV	R=.374	R=.190	R=.507-	R=731-*	R=.215	R=.259		R=.058	R=.419	R=.283-	R=.440-	R=.464	R=.106
30 µg	Sig=.258	Sig=.577	Sig=.111	Sig=.011	Sig=.526	Sig=.443		Sig=.865	Sig=.200	Sig=.399	Sig=.176	Sig=.150	Sig=.756
PY	R=.329	R=.287	R=.385	R=.293	R=.109	R=.387	R=.058		R=166-	R=.205-	R=.420-	R=.374	R=.628*
100 µg	Sig=.324	Sig=.392	Sig=.242	Sig=.382	Sig=.750	Sig=.240	Sig=.865		Sig=.627	Sig=.545	Sig=.199	Sig=.258	Sig=.039
SMZ	R=.073-	R=.315-	R=.051-	R=.187-	R=.226-	R=.101	R=.419	R=.166-		R=.306-	R=.141-	R=.137	R=.059
25 µg	Sig=.832	Sig=.346	Sig=.882	Sig=.581	Sig=.504	Sig=.767	Sig=.200	Sig=.627		Sig=.359	Sig=.680	Sig=.687	Sig=.862
ATM	R=.260	R=-211-	R=.024	R=.187	R=.182	R=.428-	R=.283-	R=.205-	R=.306-		R=.236	R=.290-	R=.224-
30 µg	Sig=.439	Sig=.534	Sig=.943	Sig=.583	Sig=.593	Sig=.189	Sig=.399	Sig=.545	Sig=.359		Sig=.485	Sig=.388	Sig=.509
ТМР	R=.820-**	R=.150-	R=.291-	R=.055	R=.128-	R=.040-	R=.440-	R=.420-	R=.141-	R=.236		R=.235	R=.265
10 µg	Sig=.002	Sig=.660	Sig=.386	Sig=.872	Sig=.709	Sig=.907	Sig=.176	Sig=.199	Sig=.680	Sig=.485		Sig=.488	Sig=.432
AK	R=.330-	R=.338	R=.401-	R=.394-	R=.210	R=.563	R=.464	R=.374	R=.137	R=.290-	R=.235		R=.835**
30 µg	Sig=.321	Sig=.310	Sig=.221	Sig=.230	Sig=.535	Sig=.071	Sig=.150	Sig=.258	Sig=.687	Sig=.388	Sig=.488		Sig=.001
AX	R=379	R=.193	R=.006-	R=.044	R=.088	R=.603*	R=.106	R=.628*	R=.059	R=.224-	R=.265	R=.835**	
15 μg	Sig=.250	Sig=.569	Sig=.985	Sig=.898	Sig=.797	Sig=.049	Sig=.756	Sig=.039	Sig=.862	Sig=.509	Sig=.432	Sig=.001	
*Correlat	ion is signific	ant at the 0.0	05 level (2-ta	ailed)									
	U		,	,									
Conela	*Correlation is significant at the 0.01 level (2-tailed)												

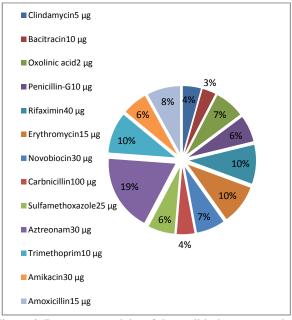


Figure:2. Percentage activity of the antibiotics types against *Enterobacter* spp.

Figure (2) the activity of the antibiotics measured as the percentage, and this showed the Aztreonam has high activity percent equal to (19%) while the Bacitracin has low activity percent equal to (3%) against *Enterobacter* spp. from all antibiotic activities.

Figure (3) types of the antibiotics produced inhibition zones with different sizes when they act as repeaters against *Enterobacter* spp., the Aztreonam has largest inhibition zone equal to (25 mm). Table (4) the activities of the antibiotics replications measured by millimeter against *Proteus* spp. Were the Novobiocin which has high activity with Mean Std. deviation and Std. error equal to 13.2, 4.391 and 1.388 respectively; while the Penicillin-G has low activity with Mean Std. deviation and Std. error equal to 3.7, 2.540 and 0.803 respectively.

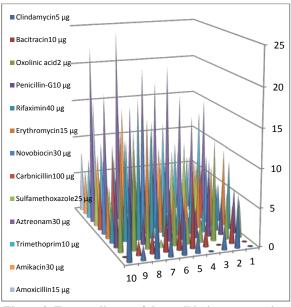


Figure:3. Zone replicates of the antibiotics types against *Enterobacter* spp.

Table (5) the correlation between antibiotic activity against *Proteus* spp. present between Clindamycin and Erythromycin; Oxolinic acid and Amoxicillin; Penicillin-G10 and Novobiocin; Carbnicillin and Amoxicillin; Sulfamethoxazole and Trimethoprim. Whereas the other antibiotics have no present correlation. This means, if the antibiotics types have activity with present correlation between them can be used all of the antibiotics types and if no present correlation can be used only the antibiotic type that has activity in treatment of the these bacteria species.

N	Inhibition zones measured by (mm)									
No.	Antibiotic types	Mean	Std. Deviation	Std. Error						
1	AX 15 μg = Amoxicillin15 μg	6.2	3.047	0.963						
2	AK 30 µg = Amikacin30 µg	8	2.867	0.906						
3	TMP 10 μg = Trimethoprim10 μg	4.9	3.928	1.242						
4	ATM 30 μg = Aztreonam30 μg	9.6	5.189	1.641						
5	SMZ 25 µg = Sulfamethoxazole25 µg	8.4	5.541	1.752						
6	PY 100 μg = Carbnicillin100 μg	6.5	3.308	1.046						
7	NV 30 μg = Novobiocin30 μg	13.2	4.391	1.388						
8	E 15 μg = Erythromycin15 μg	11.2	3.823	1.209						
9	R 40 μg = Rifaximin40 μg	10.9	4.012	1.268						
10	P 10 μg = Penicillin-G10 μg	3.7	2.540	0.803						
11	OA 2 μg = Oxolinic acid2 μg	7.9	4.605	1.456						
12	B 10 μg = Bacitracin10 μg	5.1	3.510	1.110						
13	CC 5 µg = Clindamycin5 µg	7.4	2.011	0.635						

Table:4. Inhibition zones of the antibiotics types against Proteus spp.

	Table:5. Significant Correlations between the antibiotics types against <i>Proteus</i> spp.												
	CC	В	OA	Р	R	Е	NV	PY	SMZ	ATM	TMP	AK	AX
	5 µg	10 µg	2 μg	10 µg	40 µg	15 µgggg	30 µg	100 µg	25 µg	30 µg	10 µg	30 µg	15 µg
CC		R=.088	R=.185	R=-278-	R=215	R=.812**	R=086-	R=.050	R=.054	R=.123	R=.582	R=.116	R=.131
5 μg		Sig=.797	Sig=.587	Sig=.407	Sig=.526	Sig=.002	Sig=.803	Sig=.884	Sig=.875	Sig=.718	Sig=.060	Sig=.735	Sig=.702
В	R=.088		R=.427	R=141	R=102-	R=416-	R=290-	R=244-	R=351-	R=010-	R=.122	R=.099	R=012-
10 µg	Sig=.797		Sig=.190	Sig=.680	Sig=.766	Sig=.204	Sig=.387	Sig=.470	Sig=.290	Sig=.977	Sig=.722	Sig=.771	Sig=.971
OA	R=.185	R=.427		R=050-	R=.426	R=106-	R=026-	R=492-	R=.037	R=.393	R=.073	R=.379	R=.706*
2 μg	Sig=.587	Sig=.190		Sig=.883	Sig=.191	Sig=.756	Sig=.939	Sig=.124	Sig=.915	Sig=.231	Sig=.831	Sig=.251	Sig=.015
Р	R=278-	R=.141	R=050-		R=134-	R=233-	R=.751-**	R=126-	R=.459	R=.083	R=.186	R=122-	R=.209
10 µg	Sig=.407	Sig=.680	Sig=.883		Sig=.694	Sig=.490	Sig=.008	Sig=.713	Sig=.155	Sig=.809	Sig=.584	Sig=.721	Sig=.536
R	R=215-	R=102-	R=.426	R=134-		R=245-	R=.373	R=172-	R=.077	R=.542	R=170-	R=261-	R=.529
40 µg	Sig=.526	Sig=.766	Sig=.191	Sig=.694		Sig=.468	Sig=.258	Sig=.614	Sig=.822	Sig=.085	Sig=.618	Sig=.439	Sig=.094
Е	R=.812**	R=416-	R=106-	R=233-	R=245-		R=009-	R=.141	R=.153	R=.178	R=.460	R=.223	R=.111
15 μg	Sig=.002	Sig=.204	Sig=	Sig=.490	Sig=.468		Sig=.978	Sig=.680	Sig=.653	Sig=.600	Sig=.155	Sig=.510	Sig=.746
NV	R=086-	R=290-	R=026-	R=751**	R=.373	R=009-		R=.092	R=227-	R=113-	R=192-	R=159-	R=.030
30 µg	Sig=.803	Sig=.387	Sig=.939	Sig=.008	Sig=.258	Sig=.978		Sig=.788	Sig=.501	Sig=.741	Sig=.572	Sig=.641	Sig=.930
PY	R=.050	R=244-	R=492-	R=126-	R=172-	R=.141	R=.092		R=248-	R=.052	R=304-	R=223-	R=661-*
100 µg	Sig=.884	Sig=.470	Sig=.124	Sig=.713	Sig=.614	Sig=.680	Sig=.788		Sig=.461	Sig=.880	Sig=.364	Sig=.511	Sig=.027
SMZ	R=.054	R=351-	R=.037	R=.459	R=.077	R=.153	R=227-	R=248-		R=.230	R=.650*	R=007-	R=.547
25 μg	Sig=.875	Sig=.290	Sig=.915	Sig=.155	Sig=.822	Sig=.653	Sig=.501	Sig=.461		Sig=.496	Sig=.030	Sig=.984	Sig=.081
ATM	R=.123	R=010-	R=.393	R=.083	R=.542	R=.178	R=113-	R=.052	R=.230		R=.232	R=.403	R=.448
30 µg	Sig=.718	Sig=.977	Sig=.231	Sig=.809	Sig=.085	Sig=.600	Sig=.741	Sig=.880	Sig=.496		Sig=.492	Sig=.219	Sig=.167
TMP	R=.582	R=.122	R=.073	R=.186	R=170-	R=.460	R=192-	R=304-	R=.650*	R=.232		R=.148	R=.429
10 µg	Sig=.060	Sig=.722	Sig=.831	Sig=.584	Sig=.618	Sig=.155	Sig=.572	Sig=.364	Sig=.030	Sig=.492		Sig=.664	Sig=.188
AK	R=.116	R=.099	R=.379	R=122-	R=261-	R=.223	R=159-	R=223-	R=007-	R=.403	R=.148		R=.191
30 µg	Sig=.735	Sig=.771	Sig=.251	Sig=.721	Sig=.439	Sig=.510	Sig=.641	Sig=.511	Sig=.984	Sig=.219	Sig=.664		Sig=.574
AX	R=.131	R=012-	R=.706*	R=.209	R=.529	R=.111	R=.030	R=.661-*	R=.547	R=.448	R=.429	R=.191	
15 μg	Sig=.702	Sig=.971	Sig=.015	Sig=.536	Sig=.094	Sig=.746	Sig=.930	Sig=.027	Sig=.081	Sig=.167	Sig=.188	Sig=.574	
*Correla	tion is sign	ificant at th	he 0.05 leve	el (2-tailed)									
**Corre	lation is sig	nificant at	the 0.01 le	vel (2-tailed)								

Table:5. Significant Correlations between the antibiotics types against Proteus spi

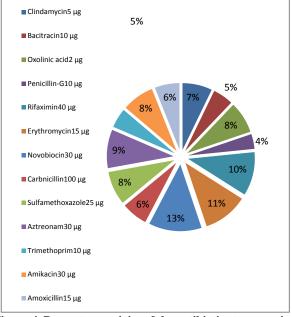


Figure:4. Percentage activity of the antibiotics types against *Proteus* spp.

Figure (4) the activity of the antibiotics measured as the percentage, and this showed the Novobiocin has high activity percent equal to (13%) while the Penicillin-G10 has low activity percent equal to (4%) against *Proteus* spp. from all antibiotic activities.

Figure (5) types of the antibiotics produced inhibition zones with different sizes when they act as repeaters against *Proteus* spp., the Novobiocin has largest inhibition zone equal to (20 mm).

Table (6) the significant differences between the same antibiotic activity against both *Enterobacter* spp. and *Proteus* spp. at p-value equal to (0.05) according to LSD system.

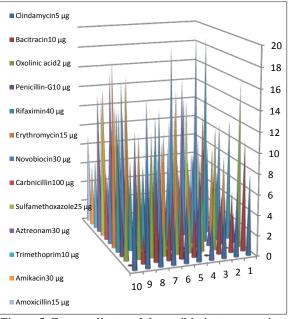


Figure:5. Zone replicates of the antibiotics types against *Proteus* spp.

The antibiotics Aztreonam, Novobiocin and Clindamycin have significant difference between the *Enterobacter* spp. and *Proteus* spp. were equal to (0.001), (0.001) and (0.05) respectively. While the other types of the antibiotics have no significant differences. This means that the antibiotic that has activity against *Enterobacter* and has significant difference with same antibiotic against *Proteus* which can be used in the treatment of the *Enterobacter* species and cannot be used in the treatment of the *Proteus* species and visa versa. Whereas if no significant different bacterial species which can be used in treatment both bacterial species if has activity and cannot be used if has no activity.

Multiple	Comparisons		
	Enterobacter spp.		
	Amoxicillin15 µg	M.D. **	1.700
	Amoxiciiii15 µg	Sig.	0.283
	Amikacin30 µg	M.D. **	2.100
	Annkacinso µg	Sig.	0.186
	Trimothonnim 10 ug	M.D. **	4.800
	Trimethoprim10 μg	Sig.	0.003*
	Aztreonam30 µg	M.D. **	8.600
	Aztreonaniso µg	Sig.	0.001*
	Sulfamethoxazole25	M.D. **	2.100
	μg	Sig.	0.273
	Contration 100 mm	M.D. **	2.300
D (Carbnicillin100 µg	Sig.	0.231
Proteus	Neurahia dia 20 me	M.D. **	6.400
spp.	Novobiocin30 µg	Sig.	0.001*
	Erythromycin15 µg	M.D. **	1.800
	Eryunomycmi 5 µg	Sig.	0.329
	Rifaximin40 µg	M.D. **	1.600
	Kitaxiiiiii40 µg	Sig.	0.385
	Penicillin-G10 µg	M.D. **	2.600
	rememm-010 µg	Sig.	0.098
	Oxolinic acid2 µg	M.D. **	0.800
	Oxonnic actu2 µg	Sig.	0.608
	Desitrasin 10 ug	M.D. **	1.900
	Bacitracin10 µg	Sig.	0.225
	Clin Isomolof a	M.D. **	3.100
	Clindamycin5 µg	Sig.	0.050*
*Significa	ant differences of mean		
** Differe	ences of mean		

Table:6. Significant differences between the same antibiotic type against different bacteria according to LSD system at 0.05 level.

Figure (6) the Novobiocin has more activity against *Proteus* spp. while the Aztreonam has more activity against *Enterobacter* spp. as well as the Aztreonam that has more activity when comparison of all antibiotics used together.

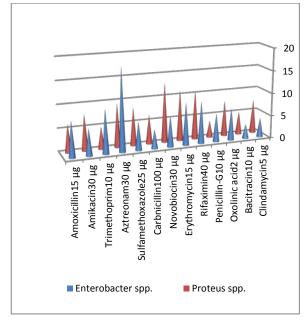


Figure:6. Comparisons between of the antibiotics types activity against *Enterobacter* spp. and *Proteus* spp.

DISCUSSION

Figure (1) the percentage of the *Enterobacter* spp. and *Proteus* spp. isolated from urine were (10%) and (13%) respectively, and when comparing these results with the results of the Hryniewicz *et al* who found the isolates of the *Enterobacter* spp. and *Proteus* spp. from urine were (9.6%) and (8.9%) respectively [19]. Whereas the Kibret and Abera who found the percentage of *Enterobacter* spp. and *Proteus* spp. isolated from urine were (2.2%) and (8.2) respectively [20]. The causative agents and infectious factors of the urinary tract varied according to the geographical areas and the range of the antibiotics resistance during the time [21]. The *Enterobacter* spp. can present in the urine and other types of samples [22]. The urine samples include the *Proteus* spp. more prevalence than the other types of the clinical samples [23].

Table (2) and figure (2) explained the Aztreonam has high activity against *Enterobacter* spp. while the Bacitracin has low activity against these bacterial species and when comparing these result with the other researchers found the Igari who presented the Aztreonam has high activity against these bacterial species [24]. But the Giamarellou *et al* who found the isolates of these bacteria were resistant to this antibiotic [25]. Whereas the Sharma *et al* found the isolates of these bacteria were resistant to Bacitracin antibiotic [26]. The resistance of the antibiotics among the *Enterobacter* spp. varied according to the samples sources, geographic locations and animal hosts as well as the environmental conditions and genetic transmission among genetic elements may effect on multidrug resistance are resistance to many antibiotics types [28].

Table (4) and figure (4) the Novobiocin which has high activity against *Proteus* spp. while the Penicillin-G has low activity against these bacterial species and when comparing these result with the other researchers found the Safary *et al* who presented the Novobiocin has high activity against these bacterial species [29]. But the Al-Mutairi *et al* who found this antibiotic has low activity against these bacteria [30]. Whereas the Stock found the isolates of these bacteria were resistant to Penicillin-G antibiotic [31]. The most important resistance mechanism among the *Proteus* spp. is including expression of the beta-lactamase through chromosomal genes, as well as can be acquired this resistance type through plasmid contain beta-lactamases mediated genes [32]. The isolates of the *Proteus* spp. can naturally resistance several types of the antibiotics [33].

Figures (3 and 5) each type of the antibiotic showed different pattern of the activity and this reflect both the type of the resistance mechanisms among bacterial species and the size of the inhibition zones among antibiotic activity, as well as the showed the Aztreonam produced largest inhibition zone was equal to (25 mm) against *Enterobacter* spp. whereas the Novobiocin and Rifaximin produced largest inhibition zone were both equal to (20 mm) against *Proteus* spp. These differences may be caused by the geographic variations among the different strains of the pathogenic gram negative bacteria [34-35]. However, widespread of the antibiotic use stimulated different bacterial resistance mechanisms against these antibiotics [36]. These bacterial resistances mechanisms include, antibiotics degradation enzymes, cell permeability alteration, change in the antibiotic binding site and activity of the efflux pump [37-39].

Tables (3,5 and 6) the significant correlations and differences between all used antibiotics as well as the Aztreonam and Novobiocin have high activity against *Enterobacter* spp. and *Proteus* spp. respectively. Aztreonam antibiotic has more activity against *Enterobacter* spp. isolates [40]. Novobiocin antibiotic has high activity against *Proteus* spp. isolates [41]. And figure (6) the Aztreonam has high activity when comparing the activity of the all used antibiotics. the Aztreonam is the first antibiotic use and

treatment of the different infections caused by pathogens of the gram negative and most *Enterobacteriaceae* species [42]. And this antibiotic has activity in the treatment the infections of both lower and upper urinary tract [43].

CONCLUSIONS

The number and percentage of the *Proteus* spp. isolates in urine samples were more than *Enterobacter* spp. isolates. And the Aztreonam has high activity against *Enterobacter* spp. while the Novobiocin has high activity against *Proteus* spp. and the Aztreonam has high activity when comparing the activity all used antibiotic.

REFERENCES

- Weichhart, T.; Haidinger, M.; Horl, W.H. and Saemann. M.D. (2008). Current concepts of molecular defence mechanisms operative during urinary tract infection. *Eur J Clin Invest.* 38: 29–38.
- Dalela, G.; Gupta, S.; Jain, D.K. and Mehta, P. (2012). Antibiotic resistance pattern in uropathogens at a tertiary care hospital at Jhalawar with special reference to Esbl, Ampc β-Lactamase and MRSA production. J Clin Diagn Res. 6: 645–651.
- Anuj Nautiyal, N.V.; Madhav, S.; Sharma R.K. Ojha, A. and Bhargava, S. (2015). Review on Nosocomial Infections. *Carib. J .Sci Tech.* 3: 781–788.
- Davies, J. and Davies., D. (2010). Origins and Evolution of Antibiotic Resistance. *Microbiology and Molecular Biology Rev.* (74)3: 417–433.
- Lorente, G.J.A.; Placer, S.J.; Salvado, C.M.; Segura A.C. and Gelabert, M.A. (2005). Evolución de la resistencia antibiótica en las infecciones urinarias adquiridas en la comunidad. *Rev Clin Esp.* 205: 259–264.
- Davin-Regli, A. and Pages, J. M. (2015). *Enterobacte raerogenes* and *Enterobacter cloacae*; versatile bacterial pathogens confronting antibiotic treatment. *FrontiersinMicrobiology*. 6: 1–10.
 Clark, N.C.; Hill, B.C.; O'Hara, C.M.; Steigrimsson, O. and Cooksey, R.C.
- Clark, N.C.; Hill, B.C.; O'Hara, C.M.; Steigrimsson, O. and Cooksey, R.C. (1990). Epidemiologic typing of *Enterobacter sakazakii* in two neonatal nosocomial outbreaks. *Diagn. Microbiol. Infect. Dis.* 13: 467–472.
- Grimont, F. and Grimont, P.A.D. (2006). The Genus Enterobacter. Prokaryotes. 6:197–214.
- Perez, A.; Poza, M.; Aranda, J.; Latasa, C.; Medrano, F.J. and Tomas, M. (2012). Effect of transcriptional activators SoxS, RobA, and RamA on expression of multidrug efflux pump AcrAB-ToIC in *Enterobacter cloacae*. *Antimicrob. Agents Chemother.* 56, 6256–6266.
- Bahashwan, S.A. (2013). Antimicrobial Resistance Patterns of *Proteus* isolate from clinical specimens. *European Scientific Journal September*. 9(27): 1857– 7881.
- O'Hara, C.M.; Brenner, F.W. and Miller, J.M. (2000). Classification, identification and clinical significanca of *Proteus*, Providencia, and *Morganella*. *Clin Microbiol Review*.13:534–546.
- Singla, P.; Sangwan, J.; Garg, S. and Chaudhary, U. (2015). Prevalence and Antibiogram of Multidrug resistant Uropathogenic Isolates of *Proteus mirabilis* in a Teaching Tertiary Care Hospital. *Int.J.Curr.Microbiol.App.Sci.* 4(12): 675–682.
- Dadheech, T.; Vyas, R. and Rastogi, V. (2015). Antibiotics Resistance of aerobic bacterial isolates of *Proteus mirabilis* from sick layer Chickens infected with septicemia and salinities in Ajmer region of Rajasthan. World Journal of Pharmacy and Pharmaceutical Sciences. 4(7): 2002–2011.
- Stiles, M and LAI, K.N.G. (1981). Biochemical Characteristics and Identification of *Enterobacteriaceae* Isolated from Meats. *Appl. and Envir. Microbio.* Mar. 41(3): 639–645.
- Holt, J.G.; Krieg, N.R.; Sneath, P.H.A.; Staley, J.T. and Williams. S.T. (1994). Bergy's manual of determinative bacteriology. 9th ed. Williams and Wilkins, Baltimore, USA.
- Pelczar, M.; Reid, R. and Chan, E. (1957). Microbiology. T.M.H. Edition, Tata McGraw-Hill Publishing Company Ltd., Noida.
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C. and Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. *Am. J. Clin. Pathol.*, 45: 493–496.
- 18. Norusis, M.J. (1986). Advanced Statistics .SPSS/PC. Chicagom ; SPSS Inc.
- Hryniewicz, K.; Szczypa, K.; Sulikowska, A.; Jankowski, K.; Betlejewska, K. and Hryniewicz, W. (2001). Antibiotic susceptibility of bacterial strains isolated from urinary tract infections in Poland. *Journal of Antimicrobial Chemotherapy*. 47(6): 773–780.
- Kibret, M. and Abera, B. (2014). Prevalence and antibiogram of bacterial isolates from urinary tract infections at Dessie Health Research Laboratory, Ethiopia. Asian Pacific Journal of Tropical Biomedicine. 4(2): 164–168.

- De Francesco, M.A.; Giuseppe, R.; Laura, P.; Riccardo, N. and Nino, M. (2007). Urinary tract infections in Brescia, Italy: Etiology of uropathogens and antimicrobial resistance of common uropathogens. *Med Sci Monit*. 13: 136– 144.
- Inversen, C. and Forsythe, S.J. (2003). Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. *Trends Food Sci Technol*. 14:443–54.
- Reslinski, A.; Gospodarek, E. and Mikucha, A. (2005). Prevalence of multidrug resistant Proteus species in clinical specimens and their susceptibility to antibiotics, *Med. Dosw. Micribial.* 57(2): 175–184.
- Igari, J. (1994). Antibacterial activity of aztreonam against clinical isolates. Jpn J Antibiot. 47(5):502–520.
- Giamarellou, H.; Evagelopoulou, V. and Lelekis, M. (1989). Enhanced in-vitro bactericidal activity of amikacin combined with latamoxef, cefotaxime and aztreonam against multi-resistant *Enterobacter cloacae*. *Journal of Antimicrobial Chemotherapy*. 23(4): 537–545.
- Sharma, S.K.; Rahul Yadav, R. and Nathawat, P. (2015). Multidrug Resistance Pattern of *Enterobacter* Spp. Isolated from Acute Respiratory Tract Infected Camels (Camelus dromedarius). *Adv. Anim. Vet. Sci.* 3(2): 128–132.
- Ojo, O.E.; Ogunyinka, O.O.G.; Agbaje, M.; Okuboye, JO.; Kehinde, O.O. and Oyekunle, M.A. (2012). Antibiogram of Enterobacteriaceae isolated from freerange chickens isolated from free-range chickens in Abeokuta, *Nigeria. Vet. Arhiv.* 82(6): 577–589.
- Stock, I.; Gruger, T. and Wiedemann, B. (2001). Natural antibiotic susceptibility of strains of the *Enterobacter cloacae* complex. *Int. J. Antimicrob. Agents*.18 (6): 537–545.
- Safary, A. Motamedi, H. Maleki, S. and Seyyednejad, S.M. (2009). A Preliminary Study on the Antibacterial Activity of Quercus brantii Against Bacterial Pathogens, Particularly Enteric Pathogens. *IJB*, 5: 176–180.
- Al-Mutairi, M.H. Ali, S. Aly, S.M. and Aldebasi, Y. (2016). Antimicrobial activity of Sider (Ziziphus Spina- Christi), Leaves extract against selected pathogenic bacteria. *Ejpmr.* 3(5): 138–144.
- Stock, I. (2003). Natural antibiotic susceptibility of Proteus spp., with special reference to *P. mirabilis* and *P. penneri* strains. *J Chemo ther.* 15(1): 12–26.
- Song, W.; Kim, J.; Bae, I.K.; Jeong, S.H.; Seo, Y.H.; Shin, J. H.; Jang, S.J.; Uh, Y.; Shin, J.H.; Lee, M.K. and Lee, K. (2011). Chromosome-Encoded AmpC and CTX-M Extended-Spectrum β-Lactamases in Clinical Isolates of Proteus mirabilis from Korea. *Antimicrob Agents Chemother*.55:1414–1419.
- Feglo, P.K.; Gbedema, SY.; Quay, S.N.A.; Adu-Sarcode, Y.O.; poku, O. and krah,C. (2010). Occurrence species distribution and antibiotic resistance of Proteus isolates: A case study at the Komfo Anoke Teaching Hospital(KATH) in Ghana. J.International Journal of Pharma science and research.1(9): 347– 352.
- Mathai, D.; Rhomberg, P.R.; Biedenbach, D.J. and Jones, R.N. (2002). Evaluation of the in vitro activity of six broad-spectrum beta-lactam antimicrobial agents tested against recent clinical isolates from India: a survey of ten medical center laboratories. *Diagn Microbiol Infect Dis.* 44(4):367– 377.
- Kaul, S.; Brahmadathan, K.N.; Jagannati, M.; Sudarsanam, T.D.; Pitchamuthu, K.; Abraham, O.C. and John, G. (2007). One year trends in gram negative bacilli antibiotic susceptibility pattern in a medical ICU in South India. *Indian J Med Microbiol.* 25: 230–235.
- Silveira, G.P.; Nome, F.; Gesser, J.C. and Sá M.M. (2006). Terenzi H. Estratégias utilizadas no combate a resistência bacteriana. *Quím Nova*. 29: 844–855.
- Grail, B.M. and Payne, J.W. (2002). Conformational analysis of bacterial cell wall peptides indicates how particular conformations have influenced the evolution of penicillin-binding proteins, beta-lactam antibiotics and antibiotic resistance mechanisms. *J Mol Recognit.* 15:113–125.
- Wright, G.D. (2005). Bacterial resistance to antibiotics enzymatic degradation and modification. Adv Drug Deliv Rev.57: 1451–1470.
- Machuca, J.; Briales, A.; Diaz-de-A.P.; Martínez M.L.; Pascual. A.; Rodríguez, M.J.M. (2015). Effect of the efflux pump QepA2 combined with chromosomally mediated mechanisms on quinolone resistance and bacterial fitness in Escherichia coli. *J Antimicrob Chemother*. 70: 2524–2527.
- Michael, F. and Parry, M.D. (1990). Aztreonam susceptibility testing: A retrospective analysis. *The American Journal of Medicin*. 88(3): 7–11.
- Sabath, L.D.; Gerstein, D.A. and Finland, M. (1968). Enhanced activity of novobiocin against gram negative bacilli in acid media. *Antimicrobial Agents* and Chemotherapy. 8:398–404.
- Harold, C. and Neu, M.D. (1990). Aztreonam activity, pharmacology, and clinical uses. *The American Journal of Medicine*. 88(3): 2–6.
- Khan, M.T. and Shah, S.H. (2001). Comparison of aztreonam against other antibiotics used in urinary tract infections. J Ayub Med Coll Abbottabad. 13: 22–24.