

## Journal of Pharmaceutical Sciences and Research www.jpsr.pharmainfo.in

# Molecular study of vaginal *Lactobacillus acidophilus* carried class III bacteriocin gene and effect of different conditions on the presence of *Lactobacillus* in some Iraq women

### Jenan Jafr Baksh AlMndalawi

<sup>1</sup>Health and medical technology/ Baghdad / Department medical analysis

| Abstract |  |
|----------|--|
|----------|--|

**Background:** Vaginal *Lactobacillus acidophilus* has ability to bacteriocins production the greatly broader inhibitory spectra that bacteriocins make and different conditions effect on the presence of vaginal *Lactobacillus*.

**Objective:** Molecular study of vaginal *L. acidophilus* carried class III bacteriocin gen and effect of different conditions on the presence of vaginal *Lactobacillus*.

**Patients and Methods:** Vaginal swabs of healthy women from hospitals in Baghdad city for isolation of *Lactobacillus acidophilus* to study effect of different conditions on the presence of vaginal *Lactobacillus* were inoculated in MRS broth medium, after 24 h incubation in the presence of 5% CO<sub>2</sub> the specimens were sub-cultured on MRS agar, 11 isolates from 49 isolates identified by PCR technique were *Lactobacillus acidophilus* from 104 *Lactobacillus* isolates from total 214 vaginal swabs.

**Results**: The first identification presented (n=49)(22.9%) *L. acidophilus* isolates then using conventional polymerase chain reaction (PCR) with specific primers gene which showed that (n=11)(22.4%) isolates were *Lactobacillus acidophilus* carried class III bacteriocin gene with high molecular weight 4000bp, also 11 *L. acidophilus* isolates characterized by their ability to inhibit the growth of *Pseudomonas aeroginosa, Escherichia coli* and *Staphylococcus aureus* through the production of bacteriocin.

**Conclusion**: This study suggested highly significant difference during *Lactobacillus acidophilus* (n=11)(22.4%) isolates from (n=49)(22.9) isolates by PCR technique and highly significant difference during studied parameter effect on the presence of vaginal *Lactobacillus* (Antibiotic intake, hormonal contraceptive, age, intravaginal products for douching, menstruation and breast feeding).

Recommendation: 1- Conventional PCR technique is more accurate for identification.

2- Purification and characterization of *L. acidophilus* bacteriocin 3- Bacteriocin applied on catheter to prevent catheters problems by using a natural safe compound (bacteriocin) from *L. acidophilus* (normal flora) 4- Reduce used antibiotics, hormonal contraceptive, alkaline and acidic products for douching which effect on presence of *L. acidophilus* and on the production of bacteriocin 5- *Lactobacillus acidophilus* bacterioin may be used an adjuvant or alternative therapy in bacterial vaginitis and/or urinary tract infection in women because they are considered safe, non-pathogenic and normal inhabitants of women urogenital tract.

Key words: Lactobacillus acidophilus, Lactobacillus, vagina, bacteriocin.

### **1. INTRODUCTION:**

The vagina is an internal organ, is not sterile, such as the heart or pancreas, because it is opening is connected to the anus, it is a place with a very high numbers of intestinal pathogens bacteria for that reason it is necessary for the vagina to have protection system to prevent from the disorderly causing proliferation of microbes and the protection against growth of pathogen based on the presence of great numbers of nonpathogenic bacteria in the vagina, which prevent the presence of unnecessary microbes[1] and these bacteria are generally called Döderlein's bacillus, Döderlein who first discovered their occurrence in the vagina, Lactobacillus acidophilus is an obligatory homofermentative, that growth in the presence of 5% Co<sub>2</sub> and this bacterium lacks oxidase therefore unable to undergo oxidative and utilize sugars e.g. (Glucose, lactose, maltose, (galactose and sucrose) as substrates for fermentation which inhabit environments with high sugar[2].

Probiotic *L. acidophilus* must be of human origin, genetically stable and non-pathogenic[3].

Mechanisms of probiotic action, it is possible to get the inhibition of pathogens by production of lactic acid, Hydrogen peroxide  $(H_2O_2)$  and bacteriocin competitive elimination of pathogens by blocking adhesion sites, competition for nutrients and modulation of the immune system, included decrease of inflammation[4].

*L. acidophilus* play an important role in maintaining the balance of the active ecosystem of the urogenital tract and *L. acidophilus* can protect against urogenital tract infections by preventing pathogenic from aggregating and adhering to the epithelial surface with producing antimicrobial substances (hydrogen peroxide, organic acids and bacteriocins), competing for nutrients and stimulating the local immune response[5].

They also give benefits to the host, for example lactose intolerance easing, decrease cholesterol level by absorption of nutrition by the intestinal normal microbiota and dysbiosis ameliorating, inhibition of toxin production, destruction of toxin receptors in the intestine, maintain of normal intestinal pH, high intestinal movement and help to preserve the reliability of the intestine permeability[6] main compositional changes during a woman's life from childhood until puberty, the limited presence of estrogens suggests a low vaginal bacterial content, which occurs during reproductive years or through menopause, as estrogen levels drop, not only the epithelial fragility of vaginal mucosa is affected because the decrease in the thickness of the different cellular layers but also the vaginal flora because the decrease of L. acidophilus which depend on the presence of glycogen to survive for that reason the vagina loses amount of its natural defenses [7].

It is also that several factors influence the balance of the vaginal microbiota in one way or another through the long period of a woman's reproductive life. The more important ones are described (Menstrual cycle, coition, use of antibiotics, hormonal contraceptives intake, use of intravaginal products for douching such as alkaline products (Sodium bicarbonate) and acidic products such as (Alum) and breastfeeding.

#### 2. Methods:

**2.1 Isolation and identification**: Vaginal swabs were obtained from 214 women between the ages of (18 - 50) years with healthy vaginal environments without urinary tract infection (UTI) and /or bacterial vaginitis. The samples were diluted to MRS broth, then incubated at 37°C for 24 h in the presence of 5% CO<sub>2</sub>[8].

The identification of *Lactobacillus acidophilus* done by PCR by DNA extraction method and by using specific primers[9] F:5-TGCAAAGTGGTAGCGTAAGC<sup>3</sup>

R:5<sup>-</sup>CCTTTCCCTCACGGTACTG<sup>-</sup>3 were prepared depending on the manufacturer's instructions (Alpha DNA /Canada)and using DNA Ladder 1Kb.

Table1: PCR amplification program

| Steps                | Temperature | Time  | Number of<br>cycles |
|----------------------|-------------|-------|---------------------|
| Initial Denaturation | 94 °C       | 3min  | One cycle           |
| Denaturation         | 94 °C       | 30sec |                     |
| Annealing            | 57 °C       | 60sec | 35cycles            |
| Extension            | 72 °C       | 30sec | SSCycles            |
| Finally Extension    | 72 °C       | 5min  | One cycles          |

PCR product was analyzed by gel electrophoresis.in.2% agarose containing red safe TM (Nucleic acid staining solution [10].

## **2.2 Detection of class III bacteriocin gene by (PCR):**By using specific primers [11].

F:5<sup>-</sup> AAGAGTTTGATCCTGGCTCAG <sup>-</sup>3

R:5 CTACGGCTACCTTGTTACGA from Promega/ USA for detection of bacteriocin gene.

Table 2: PCR amplification program for detection of class III bacteriocin gene

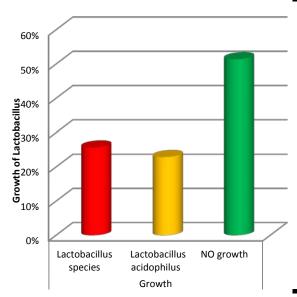
| Steps                   | Temperature | Time  | Number of cycles |
|-------------------------|-------------|-------|------------------|
| Initial<br>Denaturation | 95°C        | 3min  | One cycle        |
| Denaturation            | 95°C        | 30sec |                  |
| Annealing               | 61°C        | 40sec | 35cycles         |
| Extension               | 72°C        | 1 min | SSeycles         |
| Finally Extension       | 72°C        | 5min  | One cycle        |

The amplified PCR products were checked for the expected size on 1% (w/v) agarose gel and visualized after staining with Red Safe under ultraviolet transillumnater[12].

## 2.3Bacteriocin production

Agar-well diffusion assay was used by aliquots of  $50 \ \mu$ l of the sterile supernatant were placed in 5 mm diameter wells on Muller-Hinton-agar plates against *Pseudomonas aerogenosa Escherichia coli* and *Staphylococcus aureus* [13].

Previously seeded with the respective indicator bacteria, after incubation18h at  $37^{\circ}$ C, the diameters of the zones of growth inhibition were measured [14].


## 2.4. Statistical Analysis

The usual statistical methods were adjusted in order to assess and analyze the results according to Ying *etal*. In (2015) [15].

#### **3. RESULTS:**

 
 Table (3): Bacterial growth of Lactobacillus results according to biochemical test

| Growth of <i>Lactobacillus</i> | Number<br>of<br>isolates | Percentage | Kolmogorov-<br>Smirnov<br>Test<br>(P-value) |
|--------------------------------|--------------------------|------------|---------------------------------------------|
| Lactobacillus species          | 55                       | 25.7%      |                                             |
| Lactobacillus acidophilus      | 49                       | 22.9%      | P=0.00                                      |
| No growth                      | 110                      | 51.4%      | Highly sign.<br>(P<0.01)                    |
| Total                          | 214                      | 100%       | (1 (3)(01))                                 |



Figure(1): Growth of *Lactobacillus* species and *L. acidophilus* in the presence of 5%  $Co_2$  at 37°C.

| Table (4): Mean age / Year comparison among growth of |
|-------------------------------------------------------|
| Lactobacillus results                                 |

|                          |                               |                   |                                |               | Range |       | ANOVA                 |  |
|--------------------------|-------------------------------|-------------------|--------------------------------|---------------|-------|-------|-----------------------|--|
| Growth                   | N                             | Mean age<br>/Year | Std.<br>Deviation              | Std.<br>Error | Mini. | Maxi. | test<br>(P-<br>value) |  |
| Lactobacillus<br>species | 55                            | 30.76             | 5.196                          | 0.701         | 20    | 43    | P=0.00                |  |
| L. acidophilus           | 49                            | 26.94             | 6.929                          | 0.991         | 18    | 43    | Highly                |  |
| NO growth                | 110                           | 33.28             | 6.527                          | 0.622         | 22    | 50    | sign.<br>(P<0.01)     |  |
| Total                    | 214                           |                   |                                | (1 <0.01)     |       |       |                       |  |
|                          | Multiple Comparisons LSD test |                   |                                |               |       |       |                       |  |
| (                        | Growth                        |                   |                                | P-value       |       |       |                       |  |
| Lactobacillus            | L. acidophilus                |                   | P=0.002 Highly sign. (P< 0.01) |               |       |       |                       |  |
| species                  | NO growth                     |                   | P=0.017 Sign. (P< 0.05)        |               |       |       |                       |  |
| L.<br>acidophilus        | NO growth                     |                   | P=0.00 Highly sign. (P< 0.     |               |       | 0.01) |                       |  |

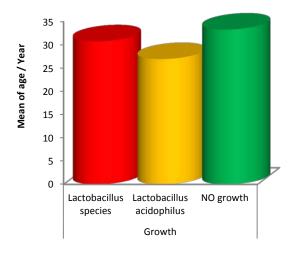



Figure (2): Mean age / Year comparison among growth

| bacterial growth.              |         |       |         |       |                                 |  |  |  |
|--------------------------------|---------|-------|---------|-------|---------------------------------|--|--|--|
|                                |         | Yes   |         | 0     | Binomial (Z)                    |  |  |  |
| Studied parameters             | (N=104) |       | (N=110) |       | Test (P-value)                  |  |  |  |
|                                | Ν       | %     | Ν       | %     | rest (r-value)                  |  |  |  |
| Lactobacillus species          | 56      | 26.17 | 158     | 73.83 | P=0.00 Highly sign.<br>(P<0.01) |  |  |  |
| Lactobacillus acidophilus      | 50      | 23.36 | 164     | 76.64 | P=0.00 Highly sign.<br>(P<0.01) |  |  |  |
| Antibiotic intake              | 22      | 10.28 | 192     | 89.72 | P=0.00 Highly sign.<br>(P<0.01) |  |  |  |
| Growth                         | 104     | 48.60 | 110     | 51.40 | P=0.733 Non sign.<br>(P>0.05)   |  |  |  |
| Acid products for douching     | 3       | 1.40  | 211     | 98.60 | P=0.00 Highly sign.<br>(P<0.01) |  |  |  |
| Alkaline products for douching | 8       | 3.74  | 206     | 96.26 | P=0.00 Highly sign.<br>(P<0.01) |  |  |  |
| Menstruation                   | 11      | 5.14  | 203     | 94.86 | P=0.00 Highly sign.<br>(P<0.01) |  |  |  |
| Breast feeding                 | 17      | 7.94  | 197     | 92.06 | P=0.00 Highly sign.<br>(P<0.01) |  |  |  |
| Coition before few hours       | 20      | 9.35  | 194     | 90.65 | P=0.00 Highly sign.<br>(P<0.01) |  |  |  |
| Hormonal contraceptive intake  | 28      | 13.08 | 186     | 86.92 | P=0.00 Highly sign.<br>(P<0.01) |  |  |  |

Table (5): Distributions of studied parameters according to bacterial growth

 Table (6): Distributions of L. acidophilus isolation according to

 PCR test results.

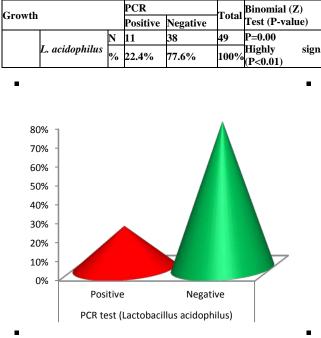



Figure (6): Distributions of *L. acidophilus* isolation according to PCR test results.

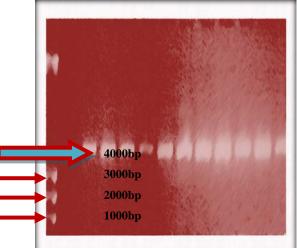
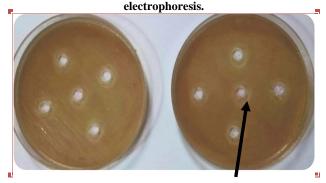




Figure (6) *Lactobacillus acidophilus* class III bacteriocin gene band 4000 bp by using Ladder 10 kb and 1% agarose for



Inhibition zone Figure (7) *L. acidophilus* inhibition zone against *P.aeroginosa* on Muller Hinton agar medium.

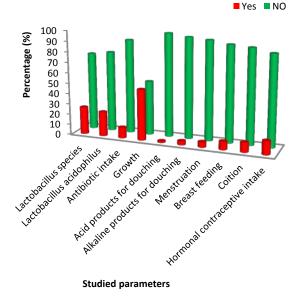



Figure (3 ): Distributions of studied parameters according to bacterial growth.

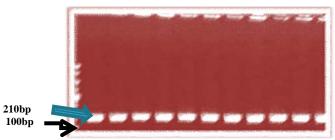



Figure (4) *Lactobacillus acidophilus* identification bands at 210bp by using Ladder 1kb and 2% agarose for electrophoresis.

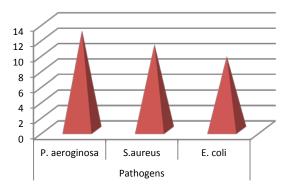

| uniusion assay.                 |         |                        |           |        |       |       |                          |
|---------------------------------|---------|------------------------|-----------|--------|-------|-------|--------------------------|
|                                 | Mean of | Std.                   | Std.      | Range  |       | ANOVA |                          |
| Pathogens                       | N       | inhibition<br>zone(mm) | Deviation | Error  | Mini. | Maxi. | test<br>(P-value)        |
| P. aeroginosa                   | 11      | 12.9091                | 1.30035   | .39207 | 11    | 14    |                          |
| S.aureus                        | 11      | 11.0909                | 1.22103   | .36815 | 9     | 12    | P=0.00                   |
| E. coli                         | 11      | 9.5455                 | .52223    | .15746 | 9     | 10    | Highly sign.<br>(P<0.01) |
| Total                           | 11      |                        |           |        |       |       | (1 (3.01)                |
| Multiple Compositions I SD test |         |                        |           |        |       |       |                          |

 Table (7) Mean of L. acidophilus bacteriocin inhibition effect

 against pathogens (P. aeroginosa, S.aureus and E. coli) by agar

 diffusion across

| 10            | Multiple | Comparisons LSD test          |
|---------------|----------|-------------------------------|
| Pathoge       | ns       | P-value                       |
| D             | S.aureus | P=0.00 Highly sign. (P<0.01)  |
| P. aeroginosa | E. coli  | P=0.00 Highly sign. (P<0.01)  |
| S.aureus      | E. coli  | P=0.002 Highly sign. (P<0.01) |



## Figure(8): Mean of *L. acidophilus* bacteriocin inhibition effect against pathogens

## (P. aeroginosa, E. coli and S. aureus) by agar diffusion assay.

## 4. DISCUSSION

Dependingfon.the.first.identification of bacteria, all 49 *Lactobacillus acidophilus* isolates were amplified with specific primers; 11 isolates (22.4%) produced a product 210 bp as in (figure 4).

The vaginal environment undergoes main compositionalichanges during a woman's life from childhood until puberty, the limited presence of...estrogens...suggests..a.low.vaginal .bacterial content, whichkoccurs during reproductive years or through menopause[7]. It is also that several factors (Menstrual cycle, coition, use of antibiotics, use of intra vaginal products for doughing and breastfeeding influence the balance of the vaginal microbiota.

Presented the results all 11 *Lactobacillus acidophilus* isolates were molecular identified carrying bacteriocin gene by amplified with the bacteriocin gene primers, all 11 isolates produced a product with high molecular weight 4000 bp as in (figure 6) therefore classified to classIII bacteriocin which agree with classification of bacteriocin according to molecular weight by Klan hammer in (1993) and Balciunas *etal.* in (2013)[16][17]

Lactic acid bacteria (LAB) are produced somelsubstances such as organiclacids hydrogen peroxide, carbon dioxide and bacteriocins[13].

Bacteriocins have been reported tokbe inhibitory against several other bacteria, most of bacteriocins produced

by Gram positive bacteria arelfrom lactic acid bacteria [18].

Some LAB bacteriocins can inhibit the growth of Grampositivelpathogenic bacteria and also inhibit the growth of some Gram-negativelspecies, therefore, such thesellactic acid bacteria canlbe used as probiotic [19].

The isolates shown a different capacity to class III bacteriocin production under the same conditions of experimentation, the results represented the cell-free-supernatants exerted varying inhibitory effect on thelindicator pathogens and inhibition was assessed against *Pseudomonas aerogenosa Escherechia coli* and *Staphylococcus aureus* and thislstudy agree with Abo-Amer (2007)[20] and Kyoung-Sik *et al.* (2007)[21].

## 5. CONCLUSION:

This study suggested highly significant difference during *Lactobacillus acidophilus* (n=11) (22.4%) isolates from (n=49) (22.9) isolates by PCR technique and highly significant difference during studied parameter effect on the presence of vaginal *Lactobacillus* (Antibiotic intake, hormonal contraceptive, age, intravaginal products for douching, menstruation and breast feeding).

#### **Recommendation:**

- 1- Conventional PCR technique is more accurate for identification.
- 2- Purification and characterization of *L. acidophilus* bacteriocin.
- 3- Bacteriocin applied on catheter to prevent catheters problems by using a natural safe compound (bacteriocin) from *L. acidophilus* (normal flora).
- 4- Reduce used antibiotics, hormonal contraceptive, alkaline and acidic products which effect on presence of *L. acidophilus*. and on the production of bacteriocin
- 5- sLactobacillus acidophilus bacteriocin may be used an adjuvant or alternative therapy in bacterial vaginitis and/or urinary tract infection in women because they are considered safe, non -pathogenic and normal inhabitants of women urogenital tract.

#### Reference

- Vasquez, A., Jakobsson, T., Ahrne, S., Forsum, U. and Molin, G. Vaginal *Lactobacillus* flora of healthy swedish women, (2002): Journal of clinical microbiology, 40: 2746-2749.
- 2- Vijayakumar J, Aravindan R,Viruthagiri T Recent trends in the production, purification and application of lactic acid. Chem. (2008): Biochem. Eng., 22(2): 245.
- 3- Goossens D, Jonkers D, Stobberingh E, Bogaard Van den A, Russel M and Stockbrugger R. Probiotics in Gastroenterology:Indications and future perspective. (2003) Scandinavian Journal of Gastroenterology. 239: 15-23.
- 4- Figueroa-González, I.;Quijano, G.; Ramírez, G.; Cruz-Guerrero, A. (2011): Probiotics and prebiotics Perpectives and challenges. J. Sci. Food Agric. 91:1341–1348.
- 5- Voltan, S., Castagliuolo, I., Elli, M., Longo, S., Brun, P., D.Incà R., Porzionato, A., Macchi, V., Palù, G., Sturniolo, G. C., Morelli, L., and Martines, D. Aggregating phenotype in *Lactobacillus crispatus* determines intestinal colonization and TLR2 and TLR4 modulation in murine colonic mucosa. (2007): Clin. Vaccine Immunol. 14:1138-1148.
- 6- Preedy, V.; Ross, R. Probiotics and Prebiotics for promoting health: Through gut microbiota. In Probiotics, Prebiotics, and Synbiotics. (2016): Bioactive Foods in Health Promotion, 1st ed.; Ross, R., Preedy, V., Eds.; Elsevier: London, UK, Volume(1)P. 79.
- 7- Jaisamrarn, U., Triratanachat, S., Chaikittisilpa, S., Grob, P., Prasauskas, V. and Taechakraichana, N. Ultra- Low-Dose Estriol and lactobacilli in the local treatment of postmenopausal vaginal atrophy.(2013).Climacteric.16:347-355.
- 8- Sneath,P.H.A.;Mair,N.S.;Sharpe, M.E. and Holt,J.G. (2009). Bergeys manual of . systematic bacteriology.Baltimore:Williams&wilkirs.
- 9- Brolazo, E., Leite, D., Tiba, M., Villarroel, M., Marconi, C. and Atonio,J.Correlation between Api 50 CH multiplex polymerase for identification vaginal, lactobacilli in isolates. (2011). Braz.J. Microbial. 42:225-232.

- 10- Branco, K., Nardi, R., Moreira, A., Farias, L., Nicoli, J. and Cavaih., M Identification and in vitro production of *Lactobacillus* antagonists from women with or without bacterial vaginosis (2010). Braz. J. Med. Biol Res. 43:100-879.
- 11- Ventura M, Elli M, Reniero R, Zink R: Molecular microbial analysis of Bifidobacterium isolates from different environments by the species specific amplified ribosomal DNA restriction analysis (ARDRA). (2001). FEMS Microbiol. Ecol. 36:113-121.
- 12- Sambrook J and Rusell DW. Molecular cloning: A laboratory manual. (2001). 3<sup>rd</sup> ed. cold spring harbor: cold spring harbor laboratory press, NY.
- 13- Dunne, C., OMahony, L., Murphy, L., Thomton, G. *et al.*, In vitro selection criteria for probiotic bacteria of human origin :correlation with in vivo findings (2001). Am J., Clin Nutr. 73:386-392.
- 14- Ogunbanwo, S.T.; Sanni, A.I. and Onilude, A.A. Characterization of .bacteriocin.produced by *Lactobacillus plantarum* F1 and *Lactobacillus brevis* OG1..(2003). Afr. J. Biotechnol., 2(8): 219-227.
- 15- Ying lu, Jiqian Fang, lu Tian and Huajin., 2015 Advanced medical statictics (book)2<sup>nd</sup> edition.

- 16- Klaenhammer TR. Genetics of bacteriocins produced by lactic acid bacteria. (1993): FEMS microbiological review. 12:39-85.
- 17- Balciunas EM, Martinez FAC, Todorov SD, de Melo Franco BDG, Converti A., de Souza Oliveira RP. (2013): Novel biotechnological applications of bacteriocins, Food Control. 32:134-142.
- Graneau S, Martin NI and Vederas JC. Two peptide bacteriocins produced by lactic acid bacteria. Biochimie. (2002). 84: 577-592.
- Topisirovic, L., Kojic, M.; Fira, L., Golic, N., Strahinic, I. and Lozo. J. Potential of lactic acid bacteria isolated from specific natural niches in food production and preservation.(2006). International journal of food microbiology. 112:230-235.
- Abo-Amer, AE. Molecular characterization of antimicrobial compound *acidophilus* GP1B. (2007). J. Microbiol. Biotechnol. 17: 774-783.
- 21- Kyoung-sick H, Kim Y, Kim SH, Oh S. Characterization and Purification of Acidocin 1B, a Bacteriocin Produced by Lactobacillus acidophilus GP1B. (2007). J. Microbiol. Biotechnol. 17: 774-783.