Effect of Quinine on Reproductive Function in Female Wistar Rats

Oyedeji K.O.*1, Amakiri-Whyte T.†, Zachariah Richard‡
1Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
2Department of Anatomy, College of Medical Sciences, Ahmadu Bello University, Zaria.

Abstract

Aim: This study was designed to investigate the effect of quinine on reproductive function in female Wistar rats. Methods: Sixteen female rats (120 – 160 g) were used for the estrous cycle and histopathological studies. Quinine (8.57 mg/kg) was administered orally on daily basis for 21 and 50 days respectively for the estrous cycle and histological studies. Estrous cycle was carried out using the technique of Marcondes et al., histologies of the ovaries and uteri were also carried out. Data were analysed using descriptive statistics and student’s t-test at p=0.05.

Results: Treatment of rats for 21 days with quinine (8.57 mg/kg) produced no significant (p>0.05) changes in all the different phases of estrous cycle relative to their respective controls, as well as induced no pathological effects on the ovarian and uterine tissues in the rats.

Conclusion: It can therefore be concluded that quinine probably has no effect on fertility as well as exhibited non-deleterious effects on the reproductive tissues of female Wistar rats.

Keywords: Quinine, Proestrous, Estrous, Ovaries, Rats.

INTRODUCTION

Quinine is an alkaloid, a naturally occurring chemical compound. It is a medication used to treat malaria and babesiosis. This includes the treatment of malaria due to Plasmodium falciparum that is resistant to chloroquine when artesunate is not available [1]. Quinine is also the ingredient in tonic water that gives it its bitter taste [2]. Quinine has been reported to induce decrease in population and diameters of Purkinje cells in rats [3]. Its antiepileptic effect in PTZ model of seizure has been reported [4]. Quinine has been reported to control body weight gain without affecting food intake in male C57BL6 mice [5]. Its additive effect on antidepressant drugs in the forced swimming test in mice has been reported [6]. It has been reported to induce tinnitus [7] and delay ulcer healing [8] in rats. Its effect on reproductive parameters in male Wistar rats has also been reported [9]. However, due to scanty information from literature on the effect of quinine on reproductive parameters in female rats, this study therefore aims at investigating the effect of this antiepileptic drug on these aforementioned parameters in female rats.

MATERIALS AND METHODS

Experimental Animals

Adult female rats weighing between 120 g – 160 g bred in the Pre-Clinical Animal House of the College of Medicine and Health Sciences, Afe Babalola University were used. They were housed under standard laboratory conditions and had free access to feed and water; they were acclimatized for two weeks to laboratory conditions before the commencement of the experiments. All experiments were carried out in compliance with the recommendations of Afe Babalola University Ethics Committee on guiding principles on care and use of animals.

Drug

Quinine sulphate tablets (Dupen Laboratories, Ltd.) were bought from Danax Pharmacy, Ibadan, Nigeria. Quinine sulphate (300 mg) was dissolved in 10 ml of distilled water to give a concentration of 30.0 mg/ml. The dosage of quinine used in this study was in accordance with that reported by the manufacturer.

Experimental Design

Study on Estrous Cycle

Six matured female rats showing at least three regular 4 – 5 day cycles were used for this study. Vaginal lavages (smears) were examined microscopically every day at a constant interval of 6.30 – 7.30 a.m. for 21 days before and after treatments with the antiarrhythmic agent. The smears were classified into one of the phases of the estrous cycle using the Marcondes technique [10]. Vaginal secretion was collected with a plastic pipette filled with 10 μL of normal saline (NaCl 0.9 %) by inserting the tip into the rat’s vagina, but not deeply. Vaginal fluid was placed on glass slide. One drop was collected with a clean tip from each rat. Unstained material was observed under a light microscope, without the use of condenser lens, with 10 and 40 x objective lenses. Three types of cells could be recognized: round and nucleated ones are epithelial cells; irregular ones without nucleus are the cornified cells; and the little round ones are the leucocytes. The proportion (preponderance) among them was used for the determination of estrous cycle phases [11, 12]. The duration of the estrous cycle was determined. In this study, the experimental animals also served as the control. The first 21 days served as the control days, while the last 21 days served as the treatment days. Each of the 6 rats for this estrous cycle study received 8.57 mg/kg of quinine.
Histopathological Study
In another set of experiment, ten matured female rats divided into two equal groups (five animals per group) received the following treatment of the antiarrhythmic agent and control orally per day for fifty days as follows:
Group I rats received 0.5 ml/100 g of distilled water as the control group.
Group II rats received 8.57 mg/kg of quinine.
On the 51st day, all the rats were sacrificed by an overdose of diethyl ether. The ovaries and uteri were dissected out, cleaned of fat and immediately fixed in Bouin’s fluid.

Histological preparation of tissues
After weighing the ovaries and uteri, they were immediately fixed in Bouin’s fluid for 12 hours and the Bouin’s fixative was washed from the samples with 70 % alcohol. The tissues were then cut in slabs of about 0.5 cm transversely and the tissues were dehydrated by passing through different grades of alcohol: 70 % alcohol for 2 hours, 100 % alcohol for 2 hours, and finally 100 % alcohol for 2 hours. The tissues were then cleared to remove the alcohol, the clearing was done for 6 hours using xylene. The tissues were then infiltrated in molten paraffin wax for 2 hours in an oven at 57oC, thereafter the tissues were embedded. Serial sections were cut using rotary microtome at 5 microns (5μm). The satisfactory ribbons were picked up from a water bath (50 -55oC) with microscope slides that had been coated on one slide with egg albumin as an adhesive and the slides were dried in an oven. Each section was deparaffinized in xylene for 1 minute before immersed in absolute alcohol for 1 minute and later in descending grades of alcohols for about 30 seconds each to hydrate it. The slides were then rinsed in water and immersed in alcoholic solutions of hematoxylin for about 18 minutes. The slides were rinsed in water, and then differentiated in 1 % acid alcohol and then put inside a running tap water to blue and then counterstained in alcoholic eosin for 30 seconds and rinsed in water for a few seconds, before being immersed in 70 %, 90 % and twice in absolute alcohol for 30 seconds each to dehydrate the preparations. The preparations were cleared of alcohol by dripping them in xylene for 1 minute. Each slide was then cleaned, blotted and mounted with DPX and cover slip, and examined under the microscope. Photomicrographs were taken at x40 and x100 magnifications.

Statistical Analysis
The mean and standard error of mean (S.E.M.) were calculated for all values. Comparison between the control and the treated group was done using student’s t-test. Differences were considered statistically significant at p<0.05.

RESULTS
Treatment of rats with quinine (8.57 mg/kg) for 50 days produced no pathological effect on the ovaries (with only developing follicles seen), which is similar to what was observed in the control rats (Plates 1 and 2).
Treatment of rats with quinine (8.57 mg/kg) for 50 days produced no pathological effect on the uteri, which is similar to what was observed in the control rats (Plates 3 and 4).

Fig. 1: Effect of 21 days treatment with quinine on estrous cycle (n = 6, *p<0.05)

Plate 1: Effect of 0.5 ml distilled water (control) on the ovary at x100.
Photomicrograph showing a normal ovary (O) with a developing follicle (DF).
DISCUSSION

The estrous cycle study revealed that quinine produced no significant changes in the duration of all the phases of the estrous cycle. Similar report was given by [13] in *Portulaca oleracea* extracts treated rats. This suggests that the antiarrhythmic drug did not cause imbalance of the ovarian and extraglandular hormones, since it has been reported that imbalance in these hormones lead to irregularity in the ovarian functions and duration of the estrous cycle [14].

The ovarian photomicrographs of the quinine treated rats revealed no pathologic lesion, which suggests the non-toxic effect of the drug on the ovaries at histological level. Similar results were reported by [13] in *Portulaca oleracea* treated rats.

The uterine photomicrographs of quinine treated rats presented with no pathologic lesion, which probably indicates the non-toxic effect of the drug on the uterii at histological level. Similar results were reported by [15] in *Allium sativum* extract treated rats.

It can therefore be concluded that quinine probably has no effect on fertility as well as exhibited non-deleterious effect on the reproductive tissues of female Wistar rats.

Conflict of Interest

We vehemently declare that there is no conflict of interests in this research work.

REFERENCES

