

A Computational Strategy to Predict Lethal Activity of Snake Venom Cardiotoxins

Austine James, K. Sudharshan, S. Kishore and T. Sivaraman*

Drug Design and Discovery Laboratory, Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore – 641021, Tamil Nadu, India.

Abstract

Venoms from *elapidae* snakes are rich sources of over 100 protein toxins and of which, cardiotoxins (CTXs) are most abundant protein toxins. To date, 88 authentically annotated primary structures of the CTXs and 20 experimental threedimensional (3D) structures of the CTXs from various species of snakes have been reported in the literature. Notwithstanding their sequence and structural similarities, lethal doses (LD_{50}) of the CTXs have been found to be varied from 0.8 to 4.9 mg/Kg b.w. (i.v). The LD₅₀ values of the CTXs are being determined using authentic functional assays, which prerequisites highly pure protein samples and sound experimental knowledge and the correlations between the LD₅₀ values and CTXs would help to annotating these protein toxins. In this context, we have developed a computational approach to predict LD₅₀ of the CTXs on the basis of unique BLOCKS computed from their primary structures. The robustness of the computational approach has been validated using authentic sequences of the CTXs for which LD₅₀ values are reported in the literature and moreover, the merits and scopes of the approaches have also been discussed in a concise manner.

Keywords: Cardiotoxins, Hemolysis, Lethal dose, Three-finger folds and Snake venom.

INTRODUCTION

Around 3400 snake species have been reported to date and about 600 species of them are identified as venomous snakes [1,2]. The snake venom consists of tens of peptides, proteins and enzymes and the protein toxins have been grouped into six superfamilies [3]. Of the six superfamilies, three-finger toxin (3FTx) superfamily contains most toxic principles and cardiotoxins (CTXs) are most abundant protein toxins of the 3FTx [3-6]. To date, 88 authentically annotated primary structures of the CTXs purified from various species of snakes have been reported in the literature. As on April 2019, 20 three-dimensional (3D) structures of the CTXs determined by experimental methods have been deposited in the 'protein data bank' and the CTXs depict simple β -sheet folds: five antiparallel strands, three loops, a globular head and an unstructured C-terminal segment [3,5-8].

All the CTXs of snake venoms reported to date are very similar to one another in terms of their primary, secondary and tertiary structures [1,7,9]. Notwithstanding their structural similarities, they are drastically differing from one another in their LD_{50} activities (lethal dose). Authentic functional assays are prerequisites for unambiguously annotating these protein toxins and the assays demand highly pure protein samples and sound experimental knowledge [10-13]. In this background, we have developed a computational approach to predict LD_{50} of the cardiotoxins on the basis of unique BLOCKS computed from their primary structures [14,15]. The robustness of the computational approach has been validated using authentic sequences of the cardiotoxins for which LD₅₀ values are reported in the literature. Moreover the merits and scopes of the approaches have also been discussed in a concise manner.

METHODS

Sequence collections, annotations and alignments

Amino acid sequences of snake venom CTXs were NCBI retrieved from protein database (https://www.ncbi.nlm.nih.gov/) and as well from UniProt database (https://www.uniprot.org/).__The CTXs were confirmed on the basis of their sequence annotations and as well by using TFTX tool (http://sblab.sastra.edu/tftx.html). The TFTX is а computational tool and predicts whether the given sequence is snake venom CTX or not and robustness of the tool has been documented in the literature [4]. MultAlign tool (http://multalin.toulouse.inra.fr/multalin/) was used to perform multiple sequence alignments for the 88 non-redundant CTX sequences considered in the present study and the alignment parameters were set as follows: Matrix: BLOSUM62; Gap Weight: 12; Gap Length: 2; Consensus levels: 50% [16]. The 21 CTXs for which LD₅₀ values were available in the literature were grouped into three categories I, II, & III based on their LD_{50} values ranging from 0.8 to < 2.0, 2.0 to < 3.0, 3.0 to 4.9, respectively. The same sequence alignment parameters mentioned above were used to identify unique BLOCKS (a short segment) of the CTXs belonging to each of the three categories.

Phylogenetic analysis

Phylogenetic tree for the 88 CTXs considered in the present study was constructed using MEGA 7 and the statistical method used for the purpose was Maximum likelihood method [17-19]. The generated tree was subjected to further refinements using 'Bootstraping' method: the number of iterations and substitution matrix were 500 and Dayhoff model, respectively. All the CTXs are referred by their corresponding accession numbers in the phylogenetic tree. The LD₅₀ values available for the 21

CTXs have been indicted within parenthesis just next to their corresponding accession IDs or accession numbers.

RESULTS AND DISCUSSION

Snake venom cardiotoxins (CTXs) are single polypeptide chain consisting of 59 - 62 standard amino acids and they are basic proteins (pI > 9.5). The CTXs belonging to threefinger toxin superfamily are abundant and most toxic principal component of elapid snake venoms [7]. As illustrated in the multiple sequence alignments (Figure 1), all CTXs, except two sequences, begin with 'leucine' and end with a pair of 'Cysteine - Asparagine' residues. Also, all CTXs have conserved 'cysteine' and 'proline' residues (Cys3, Pro8, Cys14, Gly17, Leu20, Cys21, Arg36, Cys38, Pro43, Ser46, Cys53, Cys54 and Cys59) and as well signature peptides [20]. As far as considering secondary structures, all CTXs are β -sheet proteins and around 50% of the residues of the proteins are responsible for constituting their secondary structural frameworks. Overall tertiary structures of the CTXs are very similar, if not identical, to one another: three loops (Loop I, II & III) are protruded from the globular head of the proteins and hence the name 'three-finger protein toxins'; the 'Loop I' is constituted by stand I & II (double stranded domain); Loop II & III are constituted by stand III, IV & V (triple stranded domain). Taken together, all CTXs are highly similar to one another in terms of their primary, secondary and tertiary structural contexts.

Irrespective of similar structural architectures, the CTXs depict differential binding modes with lipid bilayer and accordingly the CTXs have been classified into three types: P-type CTXs, SL-type CTXs and SK-type CTXs [9,21,22]. Interestingly, the CTXs are also differing from one another in their LD₅₀ (lethal dose through intravenous mode) values estimated from the animal model experiments for the protein toxins as reported in the literature [23-29]. As on April 2019, LD₅₀ values for 21 CTXs have been reported by various research groups worldwide and the values have been ranged from 0.83 mg/Kg b.w. to 4.9 mg/Kg b.w. (about six-fold difference). In order to understand the evolutionary relationships for the variations in the LD50 values of the CTXs, a phylogenetic tree was generated for all the 88 CTXs available to date as described in the method section (Figure 2). From a quick inspection to the phylogenetic tree of the CTXs, it is obvious that there were no clear connections between the amino acid sequences and the LD₅₀ values of the snake venom CTXs.

Table 1: Classification of 21 CTXs (for which experimental LD_{50} values are available) into three groups on the basis of 'Loop II BLOCKS' of the protein toxins. All CTXs are represented by their accession numbers and the accession numbers of the CTXs that deviate from the prediction are shown in red colour. The LD_{50} values of the CTXs are given in parenthesis next to their corresponding accession numbers.

Group I	Group II	Group III
0.8 ± 0.1 to < 2.0 ± 0.2	2.0 ± 0.2 to < 3.0 ± 0.3	3.0 ± 0.3 to 4.9 ± 0.5
mg/Kg b.w. (i.v)	mg/Kg b.w. (i.v)	mg/Kg b.w. (i.v)
P01467 (0.8); P01469 (1.1); P01445 (1.2); P01446 (1.2); P60305 (1.3); P01448 (1.4); P01470 (1.8); P01452 (2.0); P01442 (2.1); P01443 (2.1); P25517 (2.9); P24776 (3.8).	P01464 (1.8); P01462 (2.0); P24777 (2.5).	P01460 (2.6); P01459 (3.0); P01455 (3.0); P01461 (4.0); P01453 (4.1); P01454 (4.9).

Table 2: Classification of 67 CTXs (for which experimental LD₅₀ values were not available) into three groups on the basis of 'Loop II BLOCKS' of the protein toxins. All the CTXs are represented by their accession numbers.

Group I	Group II	Group III		
0.8 ± 0.1 to < 2.0 ± 0.2	2.0 ± 0.2 to < 3.0 ± 0.3	3.0 ± 0.3 to 4.9 ± 0.5		
mg/Kg b.w. (i.v)	mg/Kg b.w. (i.v)	mg/Kg b.w. (i.v)		
O73856; O93473; P24779; P60309; P01441; Q9PS34; O73857; P60310; Q98961; O73858; O73859; P60311; P07525; Q9W6W9; P0CH80; P83345; P80245; P49123; Q98965; Q9W6W6; P01468; P01457; P62375; Q91996; Q9W716; Q8UUK0; Q91126; P49122; P01471; B3EWH9 P60306; P24780; P01447; P86540; P86382; P60304; Q98958; Q91135; Q98957; P79810; Q91136; P01451; P86538; Q98956	P60301; Q02454; P60302; P60303; Q98959; Q9PST4; P01466; Q9PST3; O93471; P86541; P01440; Q98960; P01465; O93472; Q91124; Q98962; P01463; Q9DGH9; P60307; P60308 A0A0U5AUY6	P01468; P01458		

	1 10	20	30	40	50	60 63
P60301	LKC-NKLVPLF	KTCPRGKNL	CYKHFHVATP		CPKSSLLVKYVC	CNTDRCN
P60302	LKC-NKLVPLF1	KTCPAGKNL	CYKHEHVATP			CNTDRCN
402454 P60303		KTCPAGKNL	CYKHFHYATP	-KYPYKRGCIDY	CPKSSLLVKYVC	CNTDRCN
Q98959	LKC-NKLVPLF1	KTCPAGKNL	CYKHFHVATP	-KVPVKRGCIDV	CPKNSLLVKYVC	CNTDRCN
AOAOUSAUY6		KTCPAGKNL	CYKHYHVATP	-KYPYKRGCIDY	CPKSSLLVKYVC CPKSSLLVKYVC	CNTDRCN
Q9PST3	LKC-NKLYPLF1	KTCPAGKNL	CYKHYHYATP	-KYPYKRGCIDY	CPKSSLLVKYVC	CNTDRCN
093471	LKC-NKLYPLF	KTCPAGKNL	CYKIFHYATP	-KYPYKRGCIDY	CPKSSLLVKYVC	CNTDRCN
073856		KTCPAGKNL	CYKHYHVAHP	-KYPYKRGCIDY	CPKSSLLVKTVU	
093473	LKC-NKLYPLFY	KTCPAGKNL	CYKHFHVAHP	-KYPYKRGCIDY	CPKSSLLVKYVC	CNTDRCN
P01440		KTCPAGKNL	CYKHYHYATP			
Q9DGH9	LKC-NKLYPLF1	KTCPAGKNL	CYKIFHYATP	-KYPYKRGCIDY	CPKNSALVKYVC	CNTDRCN
093472	LKC-NKLYPLF	KTCPAGKNL	CYKHYHYATP	-KYPYKRGCIDY	YPKSSLLVKYVC	CNTDRCN
098962	LKC-NKLIPIAS	KTCPAGKNL	CYKHEHVATP		CPKNSLLVKTVU	CNTDRCN
P24779	LKC-NKLIPLAY	KTCPAGKNL	CYKHFHVAAP	-KYPYKRGCIDA	CPKNSLLVKYVC	CNTDRCN
P60307 P60308		KTCPPGKNL	CYKHEHVATP	-KYPYKRGCIDY	CPKSSLLVKYVU CPKSSLLVKYVU	
P60309	LKC-KKLYPLFS	KTCPPGKNL	CYKHFHYAAP	-KYPYKRGCINY	CPKSSLLYKYYC	CNTDKCN
P01441		KTCPAGKNL	CYKHEHVAAP			CNTDKCN
P01442	LKC-NKLYPLF	KTCPAGKNL	CYKHFHYSNL	-TYPYKRGCIDY	CPKNSALVKYVC	CNTDRCN
073857	LKC-NKLVPLF1	KTCPAGKNL	CYKHFHYSNL	-TVPVKRGCIDV	CPKNSALVKYVC	CNTDRCN
P60310 P01443	RKC-NKLVPLF1	KTCPAGKNL	CYKHENVSNL	-TVPVKRGCIDV	CPKNSHLYKTYU CPKNSALYKYYO	
Q98961	LKC-NKLYPLF1	KTCPAGKNL	CYKHFHYSNK	-HYPYKRGCIDY	CPKNSALYKYYC	CNTDRCN
073858		KTCPAGKNL		-TYPYKRGCIDY	CPKNSALYK <mark>YY</mark> C CPKNSALYK <mark>YY</mark> C	CNTDRCN
P60311	DKC-NKLYPLF1	KTCPAGKNL	CYKHFHYSDL	-TYPYKRGCIDY	CPKNSALVKYVC	CNTDRCN
Q9H6H9	RKC-NKLVPLF1	KTCPAGKNL	CYKHEHVSNL			CNTDRCN
P60306	LKC-NKLKPLAY	KTCPAGKNL	CYKHFHHSNK	-TYPYKRGCIDY	CPKNSLLVKYVC	CNTDRCN
P24780	LKC-NKLIPLAY	KTCPAGKNL	CYKHFHYSNK	-TYPYKRGCIDY	CPKNSLYLKYYC	CNTDRCN
P01446		KTCPAGKNL	CYKHENVSNK	-TVPVKRGCIDV	CPKNSLVLKTVU CPKNSLLVK VV O	CNTORCN
P01445	LKC-NKLIPLAY	KTCPAGKNL	CYKHFHYSNK	-TVPVKRGCIDV	CPKNSLLVKYVC	CNTDRCN
P01447 P86540	LKC-NKLIPLAY	KTCPAGKNL	CYKHYHYSNK	-TYPYKRGCIDY TYPYKRGCIDY	CPKNSLYLKYEC	CNTDRCN
P86382	LKC-NKLIPLAY	KTCPAGKDL	CYKHYHYSNK	-TYPYKRGCIDY	CPKNSLLYKYEC	CNTDRCN
P83345		KTCPAGKNL		-KYPYKRGCIDY		CNTDRCN
P60304	LKC-NKLIPIAS	KTCPAGKNL	CYKHFMMSDL	-TIPYKRGCIDY	CPKNSLLVKYVC	CNTDRCN
Q98958	LKC-NQLIPIAS	KTCPAGKNL	CYKHFHHSDL	-TIPYKRGCIDY		CNTDRCN
098957	LKC-NKLPPIAS	KTCPAGKNL	CYKHFHHSDL	-TIPYKRGCIDY	CPKNSLLVKTVC	CNTDRCN
P79810	LKC-NKLIPIAS	KTCPAGKNL	CYKHFHHSDL	-TIPYKRGCIDY	CPKNSHLVKYVC	CNTDRCN
U91136 P01451	LKC-NKLIPIHS	KTCPEGKNL	CYKHENNSDL	-TIPYKRGCIDY	CPKNSLLYKTYU CPKNSLLYKYYO	
Q98956	LKC-NKLVPIAS	KTCPRGKNL	CYKHFHHSDL	-TYPYKRGCIDY	CPKSSLLVKYVC	CNTDICN
P86538 P01454	LQC-NKLYPIAS	KTCPPGKNL	CYKHENVSDL	-TIPYKRGCIDY	CPKNSLLVKYEC CPKNSALVKYVC	CNTDRCN
P01453	LEC-NQLIPIA	KTCPEGKNL	CYKHFHYSTS	-TYPYKRGCIDY	CPKNSALYKYYC	CNTDRCN
P01448	LEC-NKLYPIAH	KTCPAGKNL		-TIPYKRGCIDY	CPKSSLLVKYVC	
P49123	LKC-NQLIPPF1	KACAAGKNL	CYKHFHYAAP	-KYPYKRGCIDY	CPKSSLLVKYVC	CNTDRCS
Q98965	LKC-NQLIPPF1	KTCAAGKNL	CYKHFHVAAQ	-RFPYKRGCIDY		CNTDRCNN
P01467	LKC-NQLIPPF	KTCPKGKNL	CYKHTHRAAP		CPKSSLLIKYHO	CNTNKCN
P01468	LKC-NQLIPPF	KTCPKGKNL	CYKHTHRAAP	-HYPYKRGCIDY	CPKSSLLIKYHO	CNTDKCN
P01469 P01470	LKC-NRL TPPFF	IKTCPKGKNL	CYKHTHRLAP	-KYPYKRGCIDY	CPKSSLLIKTAU	CNTUKUN
P01456		KTCPEGKNL	CYKHFHYSTS	-TVPVKRGCIDV	CPKDSALVKYVC	CSTDKCN
P01455 P01458		KTCPEGKNL	CYKMEMVSTS	-TYPYKRGCIDY	CPKNSALVKYVC CPKNSALVKYVC	CSTDKCN
P01459	LKC-YKLYPPF	KTCPEGKNL	CYKHYHYSTL	-TYPYKRGCIDY	CPKNSALVKYYC	CNTDKCN
P01460		KTCPEGKNL	CYKHYHYSTL	-TYPYKRGCIDY	CPKNSALVKYVC	CNTNKCN
P01457	LKC-HQLYPPF	KTCPEGKNL	CYKHYHYSSS	-TYPYKRGCIDY	CPKNSALVKYVC	CNTDKCN
P01463	LKC-HQLIPPF	KTCPEGKNL	CYKHYHVATP	-HIPYKRGCIDY	CPKNSALVKYHO	CNTDKCN
P01464 P01462		IKTCPEGKNL	CYKHYHVATP	-HLPYKRGCIDY	CPKNSHLYKTA CPKDSALYK <mark>y</mark> ho	CNTRKCN
P01465	LKC-HKLYPPF	KTCPEGKNL	CYKHYHYATP	-HLPYKRGCIDY	CPKDSALVKYHC	CNTNKCN
P01466 P01452	LKC-HKLYPPF	KTCPEGKNL	CYKNYNYATP CYKNNI ASKK	-MLPYKRGCINY	CPKDSALVK YH C CPKNSALVK YV C	CSTOPCN
P25517	LKC-KKLIPLFS	KTCPEGKNL	CYKHTHRLAP	-KYPYKRGCIDY	CPKSSFLYKYEC	CDTDRCN
P62375		KTCPEGKNL			CPKNSALLKYVC	CSTOKCN
Q9H716	LKCHNTQLPFI	KTCPEGKNL	CFKATLRKFP	LKFPYKRGCADN	CPKNSALLKYVC	CSTDKCN
QBUUKO	LKCHNTQLPFI	KTCPEGKNL	CFKATLKKFP	LKFPYKRGCADN	CPKNSALLKYYC	CSSDKCN
491126 P49122	LKCHNTQLPFTY	NTCPEGKNL	CFKATL-KFP	LKEPYKRGCHDN	CPRSSSLVKVVC	CKTDKCN
P24777	LKCHNKLYPFLS	KTCPDGKNL	CYKHSHEVTP	-HIPIKRGCTDT	CPKSSLLVKVVC	CKTDKCN
P24776 P01471	LKCHNKYVPFLS	KICPEGKNL		-KIPIKRGCTDA	CPKSSLLVNVHC	CNKOKCN
ВЗЕННЭ	LKCHNKLYPFLS	KTCPEGKNL	CYKHTLHKHP	-KIPIKRGCTDA	CPKSSLLYKYYC	CNKDKCN
Consensus	LKC.nkl!P.f.	KTCPaGKNL	CYKHf\$vp	. ! PYKRGCiDv	CPK.S1L!KuvC	CnTDrCN

Figure 1: A figurative representation showing multiple sequence alignments of the 88 cardiotoxins from various snake venoms as obtained from MultAlign computational tool.

Figure 2: Phylogenetic tree generated using MEGA 7 computational tool for the 88 non-redundant and authentic snake venom cardiotoxins deposited in the primary database is depicted. LD₅₀ values for 21 of the 88 cardiotoxins have been denoted in parenthesis beside to their corresponding accession numbers.

As mentioned above, overall secondary and tertiary structures of all the CTXs are very similar to one another. In this background, in order to find relationships between the sequences - LD_{50} values of the CTXs, we attempted to identify unique 'BLOCKS' in the primary structures of the CTXs. For sake of understanding the particular relationships, the 21 CTXs for which LD_{50} values are available in the literature were divided into three groups: the LD₅₀ values for CTXs belonging to the Group I were ranged from 0.83 mg/Kg b.w. to < 2.0 mg/Kg b.w.; the LD₅₀ values for the CTXs belonging to the Group II were ranged from 2.0 mg/Kg b.w. to < 3.0 mg/Kg b.w.; the LD₅₀ values for CTXs belonging to the Group III were ranged from 3.0 mg/Kg b.w. to 4.9 mg/Kg b.w. In the meantime, on the basis of error associated with the LD_{50} values reported for a few CTXs, the upper and lower limits set for the three Groups were allowed with 10% liberalization. The accession IDs of the CTXs belonging to the three groups are as mentioned herein: Group I -P01467, P01469, P01445, P01446, P60305, P01448, P01470, P01464, P01452 and P01462; Group II - P01442, P01443, P24777, P01460, P25517 and P01459; Group III -P01455, P24776, P01461, P01453, P01454. On the basis of the sequence alignments, two BLOCKS were identified for each of the three groups. One BLOCKS was constituted at positions 10 & 11 and another BLOCKS was constituted at positions 30, 31 & 32. From threedimensional structural standpoints, the former and latter BLOCKS were situated in the tips of Loop I and Loop II of the CTXs, respectively. The Loop I BLOCKS for the Group I, II and III CTXs were AX, FS and XX, respectively. Similarly, the Loop II BLOCKS for the Group I, II and III CTXs were XXX, TPX and TXT, respectively. In both the cases, the letter 'X' stands for anyone of the twenty standard amino acids. It should also be mentioned that the position mentioned for the residues constituting the Loop I and II BLOCKS would vary for the CTXs possessing 'Histidine' at 4th position and as well CTXs possessing 'Leucine' at 32nd position (Figure 1).

The CTXs for which LD_{50} values are available were classified on the basis of the two 'BLOCKS' identified in the present study. The classifications of the 21 CTXs carried out either on the basis of 'Loop I BLOCKS' alone or combination of 'Loop I & II BLOCKS' were not reliable (data not shown). On the other hand, the classifications carried out for the CTXs on the basis of the

'Loop II BLOCKS' were reliable with 86% confidence limits (Table 1). In this context, it is also interesting to point out that primary functional unit of the CTXs is presumably Loop II to elicit their biological activities such as cytolysis, haemolysis, cardiac muscle damages and membrane depolarization. Of the 21 sequences, 18 sequences could be correctly classified into their corresponding groups; the three CTXs (P25517, P24776 and P01460) were found to deviate from the classification by 'Loop II BLOCKS'. The three sequences could not be reliably classified using the former strategy too ('Loop I/II BLOCKS') implying that the three sequences presumably further experimental and demands computational validations in an accurate manner for authentic classifications.

In this background, the 67 CTXs for which LD₅₀ values have not yet been deposited in the public domain to date were subjected to classifications in order to predict their LD₅₀ values on the basis of 'Loop II BLOCKS' and the results are shown in Table 2. The 67 sequences were classified into 44, 21 and 2 into Group I, Group II and Group III, respectively. The data suggested that the LD_{50} values for the 44 sequences belonging to Group I have been predicted to be ranged from 0.8 ± 0.1 to 2.0 ± 0.2 mg/Kg b.w. (i.v); similarly the LD₅₀ values for the 21 sequences belonging to Group II would be varied from 2.0 \pm 0.2 to 3.0 \pm 0.3 mg/Kg b.w. (i.v) and for 2 sequences belonging to Group III would be varied from 3.0 \pm 0.3 to 4.9 ± 0.5 to mg/Kg b.w. (i.v) as predicted by the strategies described in the present study. In this context, it would be preferable to validate/confirm the predicted LD₅₀ values for the 67 CTXs authentically deposited in the primary databases (NCBI/UniProt) through experimental methods.

CONCLUDING REMARKS

In the present study, we have developed a computational strategy to predict LD_{50} values of snake venom CTXs in a systematic manner. The computational strategies have been validated using the 21 CTXs for which LD_{50} values have been authentically reported in the literature and the comprehensive analyses suggested that robustness of the strategy is about 86%. Using the computational approach, LD_{50} values for the non-redundant 67 CTXs (for which LD_{50} values were not available in the literature) have been predicted and rationalized on the basis of unique BLOCKS identified in the primary structures of the CTXs.

Acknowledgement:

The authors would like to express their sincere thanks to the management of Karpagam Academy of Higher Education for providing computational facilities to successfully complete the *in silico* experiments of the present study.

REFERENCES

- Hegde, R.P., Rajagopalan, N., Doley, R., Kini, R.M. (2009). Snake venom three-finger toxins. In: Mackessy SP (ed) Handbook of venoms and toxins of reptiles. CRC, Boca Raton, pp 287–302
- [2] Kini, R.M. (2006). Anticoagulant proteins from snake venoms: structure, function and mechanism. BiochemJ 397:377–387. doi:10.1042/BJ20060302

- [3] Kini, R.M., Doley, R. (2010). Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon 56:855–867. doi:10.1016/j.toxicon.2010.07.010
- [4] Rajesh, S.S., and Sivaraman, T. (2011). TFTX: A computational tool for predicting subfamilies of three-finger toxins from the venoms of elapid snakes, J. Pharm. Sci. and Res. 3(12), 1612-1618.
- [5] Tsetlin, V. (1999). Snake venom alpha-neurotoxins and other 'three-finger' proteins. Eur. J. Biochem. 264, 281–286.
- [6] Menez, A. (1998). Functional architectures of animal toxins: a clue to drug design? Toxicon 36, 1557–1572.
- [7] Kumar, T.K.S., Jayaraman, G., Lee, C.S., Arunkumar, A.I, Sivaraman, T., Samuel, D., & Yu, C. (1997). Snake Venom Cardiotoxins-Structure, Dynamics, Function and Folding. Journal of Biomolecular Structure and Dynamics, 15(3), 431–463. doi:10.1080/07391102.1997.10508957
- [8] Gorai, B., & Sivaraman, T. (2013). Unfolding stabilities of two paralogous proteins from *Naja naja naja* (Indian cobra) as probed by molecular dynamics simulations. Toxicon, 72, 11– 22.doi:10.1016/j.toxicon.2013.05.024
- [9] Gorai, B., Karthikeyan, M., and Sivaraman, T. (2016). Putative membrane lytic sites of P-type and S-type cardiotoxins from snake venoms as probed by all-atom molecular dynamics simulations. Journal of Molecular Modeling, 22(10). doi:10.1007/s00894-016-3113-y
- [10] Sivaraman, T., Kumar, T.K.S., Hung, K.W., and Yu, C. (1999). Influence of disulfide bonds on the induction of helical conformation in proteins. J. Prot. Chem. 18, 481-488.
- [11] Jayachandra, K., Sivaraman, T. (2011). Hepatoprotective Effect of Aegle Marmelos (L.) Corr. Leaf Powder (Crude) Against Carbon Tetrachloride-Induced Hepatic Damage in Albino Rats. Journal of Pharmaceutical Sciences and Research, 3(7), 1360-1363.
- [12] Oukkache, N., Jaoudi, R.E. (2014). Evaluation of the lethal potency of scorpion and snake venoms and comparison between intraperitoneal and intravenous injection routes. Toxins 6: 1873-1881.
- [13] Tohamy, A.A., Mohamed, A.F. (2014). Biological effects of *Naja haje* crude venom on the hepatic and renal tissues of mice. J King Saud Uni-Sci26: 205-212.
- [14] David, W. Mount., Bioinformatics: Sequence and Genome Analysis. 2004. 8th ed., CSHL Press.
- [15] Attwood, Teresa. K., David Parry-Smith. Introduction to Bioinformatics. 1999. Addison Wesley Longman limited.
- [16] Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering, Nucl. Acids Res., 16 (22), 10881-10890
- [17] Schwarz, R., and Dayhoff, M. (1979). Matrices for detecting distant relationships. In Dayhoff M., editor, Atlas of protein sequences, pages 353-58. National Biomedical Research Foundation.
- [18] Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870-1874.
- [19] Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791.
- [20] Gayatri, S., Gorai, B., Sivaraman, T. (2016). Understanding the Structures and Functions of Snake Venom Cardiotoxins. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 7(2), 936 - 9 41.
- [21] Dubovskii, P.V., Lesovoy, D.M., Dubinnyi. M.A., Konshina, A.G., Utkin, Y.N., Efremov, R.G., Arseniev, A.S. (2005). Interaction of three-finger toxins with phospholipid membranes: comparison of Sand P-type cytotoxins. Biochem J 387:807–815. doi:10.1042/bj20041814
- [22] Suzuki-Matsubara, M., Athauda, S.B.P., Suzuki, Y., Matsubara, K., & Moriyama, A. (2016). Comparison of the primary structures, cytotoxicities, and affinities to phospholipids of five kinds of cytotoxins from the venom of Indian cobra, *Naja naja*. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 179, 158–164. doi:10.1016/j.cbpc.2015.09.015
- [23] https://www.uniprot.org/
- [24] Joubert, F. J., & Taljaard, N. (1980). The complete primary structures of three cytotoxins (CM-6, CM-7 and CM-7A) from *Naja naja kaouthia* (Siamese cobra) snake venom. Toxicon, 18(4), 455– 467. doi:10.1016/0041-0101(80)90053-7
- [25] Das, T., Bhattacharya, S., Halder, B., Biswas, A., Das Gupta, S., Gomes, A., & Gomes, A. (2011). Cytotoxic and antioxidant property of a purified fraction (NN-32) of Indian *Naja naja* venom

on Ehrlich ascites carcinoma in BALB/c mice. Toxicon, 57(7-8), 1065–1072. doi:10.1016/j.toxicon.2011.04.012

- [26] Joubert, F.J. (1977). Snake Venom Toxins. The Amino-Acid Sequences of Three Toxins (9B, 11 and 12A) from *Hemachatus haemachatus* (Ringhals) Venom. European Journal of Biochemistry, 74(2), 387–396. doi:10.1111/j.1432-1033.1977.tb11403.x
- [27] Joubert, F.J. (1976). Snake venom toxins. The amino acid sequence of three toxins (CM-2e, CM-4a and CM-) from *Naja haje*

annulifera (Egyptian cobra) venom. Hoppe-Seyler's Z. Physiol. Chem. 357:1735-1750

- [28] Joubert, F.J. (1976). Snake Venom Toxins. The Amino-Acid Sequences of Three Toxins (CM-8, CM-11 and CM-13a) from *Naja haje annulifera* (Egyptian cobra) Venom. Eur. J. Biochem. 64:219-232
- [29] Kaneda, N., Sasaki, T., & Hayashi, K. (1977). Primary structures of cardiotoxin analogues II and IV from the venom of *Naja naja atra*. Biochimica et Biophysica Acta (BBA) - Protein Structure, 491(1), 53–66. doi:10.1016/0005-2795(77)90040-x