Sansevieria aethiopica Thunb.: A review of its botany, medicinal uses and biological activities

A Maroyi

Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa; E-mail: amaroyi@ufh.ac.za

Abstract
Sansevieria aethiopica is a perennial herb widely used as herbal medicine in southern Africa. This study is aimed at providing a critical review of the botany, medicinal uses and biological activities of S. aethiopica. Documented information on the botany, medicinal uses and biological activities of S. aethiopica was collected from several online sources which included BMC, Scopus, SciFinder, Google Scholar, Science Direct, Elsevier, Pubmed and Web of Science. Additional information on the botany, medicinal uses and biological activities, of S. aethiopica was gathered from pre-electronic sources such as book chapters, books, journal articles and scientific publications sourced from the University library. This study showed that the leaf sap, leaves, rhizomes and roots of S. aethiopica are used as herbal medicines for diarrhoea, earache and ear infections, haemorrhoids, intestinal parasites and worms, sores and wounds, stomach problems, toothache and ulcers. Pharmacological research revealed that S. aethiopica crude extracts have antibacterial, antifungal, antioxidant, antiprototozoan and cytotoxicity activities. Sansevieria aethiopica should be subjected to detailed phytochemical, pharmacological and toxicological evaluations aimed at correlating its medicinal uses with its phytochemistry and pharmacological activities of the species.

Keywords: Asparagaceae, ethnopharmacology, herbal medicine, indigenous pharmacopeia, Sansevieria aethiopica

INTRODUCTION
Sansevieria aethiopica Thunb. is a member of the Asparagaceae family,1 a classification system that is in agreement with the Angiosperm Phylogeny Group.2 Sansevieria aethiopica has also been placed within Agavaceae, Convallariaceae, Dracaenaceae, Liliaceae and Ruscaceae families.3-12 According to Plants of the World Online,13 S. aethiopica is a synonym of Dracaena aethiopica (Thunb.) Byng & Christenh. However, according to The Plant List, created and managed by the Royal Botanic Gardens (UK) and the Missouri Botanical Gardens (USA), S. aethiopica is a valid and accepted name.14 Therefore, in this study, the name S. aethiopica and family Asparagaceae have been adopted and will be used throughout the manuscript. The roots of S. aethiopica are sold as herbal medicines in KwaZulu-Natal province in South Africa.15,16 Sansevieria aethiopica is also one of the important medicinal plants in South Africa, included in the book “medicinal plants of South Africa”, a photographic guide to the most commonly used plant medicines in the country, including their botany, main traditional uses and active ingredients.17 Rhizomes of S. aethiopica are a source of drinking water in the Kalahari desert in Namibia.18,20 Leaves of S. aethiopica are an important ingredient of bushmen arrow poison, and the species is usually mixed species such as Acacia mellifera (M. Vahl) Benth, Asparagus exuvialis Burch, Bohgunnia madagascariensis (Desv.) J.H. Kirkbr. & Wiersema, Dicerocaryum eriocarpum (Decne.) Abels, Ipomoea bolusiana Schinz, Jatropha erythropoda Pax & K. Hoffm., Lonchocarpus nelsii (Schinz) Heering & Grimme, Raphionacme velutina Schltr., R. lanceolata Schinz, Solanum kwebense N.E. Br., Tarchonanthus camphoratus L., Terminalia sericea Burch. ex DC. and larvae of Diamphidia bettle.18,21-26 It is within this context that this review was undertaken aimed at reviewing the botany, medicinal uses and biological activities of S. aethiopica so as to provide baseline data required in evaluating the therapeutic potential of the species.

Botanical profile of Sansevieria aethiopica
The genus Sansevieria Thunb. is in honour of an Italian Pietro Antonio Sanseverino, Count of Chiaromonte (1724-1771) in whose garden the plant was growing.29 The specific name “aethiopica” is indirectly related to Ethiopia as in classical times the name was used in reference to “south of the known world”, that is, south of Libya and Egypt, now known as southern Africa.27 The name S. aethiopica is associated with the following synonyms: S. caespitosa Dinter, S. glauca Haw., S. scabrifolia Dinter, S. thunbergii Mattei and S. zeylanica sensu Baker.6,19,27,28 Sansevieria aethiopica has been recorded in Botswana, Mozambique, Namibia, South Africa, Zambia and Zimbabwe.6,19,27,28
Sansevieria aethiopica is a succulent, evergreen, perennial herb which can grow up to 75 cm high growing from a thick rhizomatous rooting system, often forming large colonies.6,27,28 The leaves are erect or somewhat recurved, loosely clustered, smooth margined, white in colour with inner red line, thick and leathery with a rough surface, green in colour, mottled with paler bands, apex whistish and spiny. The inflorescence is a dense spike-like, with white, cream or greenish, sometimes tinged purple flowers. The fruits are spherical in shape, lobed and red when ripe. Sansevieria aethiopica is widespread in deep shade in well-drained areas of mixed woodland, savanna, preferring termite mounds, sandy soil, rocky places at an altitude ranging from 100 m to 1465 m above sea level.6,19,27,28

Medicinal uses of Sansevieria aethiopica
The leaf sap, leaves, rhizomes and roots of S. aethiopica are used as herbal medicines for diarrhoea, earache and ear infections, haemorrhoids, intestinal parasites and worms,
sores and wounds, stomach problems, toothache and ulcers (Table 1; Figure 1). Other minor medicinal applications recorded in a single country include use of the species as aphrodisiac, to increase appetite in children, magical purposes, scare-off snakes, stimulate milk production and as herbal medicine for abdominal pains, stiff neck and venereal diseases.

<table>
<thead>
<tr>
<th>Medicinal use</th>
<th>Parts used</th>
<th>Country</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal pains</td>
<td>Roots</td>
<td>South Africa</td>
<td>Neuwinger(^{18})</td>
</tr>
<tr>
<td>Aphrodisiac</td>
<td>Leaves</td>
<td>Zimbabwe</td>
<td>Takawira-Nyenya and Stedje(^{29})</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>Roots and rhizomes</td>
<td>South Africa and Zimbabwe</td>
<td>Van Wyk et al.(^{11}); Neuwinger(^{18}); Takawira-Nyenya(^{20}); Buyun et al.(^{32}); Tkachenko et al.(^{33}); Van Wyk and Gericke(^{35})</td>
</tr>
<tr>
<td>Earache and ear infections</td>
<td>Leaves and rhizomes</td>
<td>Botswana, South Africa and Zimbabwe</td>
<td>Van Wyk et al.(^{11}); Heath and Heath(^{30}); Takawira-Nyenya(^{20}); Takawira-Nyenya and Stedje(^{29}); Hedberg and Staugard(^{30}); Hutchings et al.(^{31}); Buyun et al.(^{32}); Tkachenko et al.(^{33}); Van Wyk and Gericke(^{35}); Case(^{36}); Van Wyk et al.(^{37}); Maroyi(^{38}); David et al.(^{39})</td>
</tr>
<tr>
<td>Haemorrhoids</td>
<td>Roots and rhizomes</td>
<td>South Africa</td>
<td>Van Wyk et al.(^{17}); Neuwinger(^{18}); Takawira-Nyenya(^{20}); Buyun et al.(^{32}); Tkachenko et al.(^{33}); Van Wyk and Gericke(^{35}); Case(^{36}); Van Wyk(^{40})</td>
</tr>
<tr>
<td>Increase appetite in children</td>
<td>Leaves</td>
<td>Botswana</td>
<td>Hedberg and Staugard(^{10})</td>
</tr>
<tr>
<td>Intestinal parasites and worms</td>
<td>Leaves and rhizomes</td>
<td>South Africa and Zimbabwe</td>
<td>Van Wyk et al.(^{11}); Takawira-Nyenya(^{20}); Buyun et al.(^{32}); Tkachenko et al.(^{33}); Van Wyk and Gericke(^{35}); Case(^{36}); Van Wyk(^{40}); Cork et al.(^{41})</td>
</tr>
<tr>
<td>Magical purposes</td>
<td>Rhizomes</td>
<td>South Africa</td>
<td>Hutchings et al.(^{31})</td>
</tr>
<tr>
<td>Scare-off snakes</td>
<td>Leaves</td>
<td>Zimbabwe</td>
<td>Takawira-Nyenya and Stedje(^{29})</td>
</tr>
<tr>
<td>Stiff neck</td>
<td>Leaves</td>
<td>Namibia</td>
<td>Neuwinger(^{18}); Takawira-Nyenya(^{20}); Buyun et al.(^{32}); Tkachenko et al.(^{33})</td>
</tr>
<tr>
<td>Stimulate milk production</td>
<td>Leaf sap</td>
<td>Namibia</td>
<td>Takawira-Nyenya(^{20}); Buyun et al.(^{32}); Tkachenko et al.(^{33})</td>
</tr>
<tr>
<td>Stomach problems</td>
<td>Rhizome</td>
<td>South Africa and Zimbabwe</td>
<td>Van Wyk et al.(^{11}); Takawira-Nyenya(^{20}); Buyun et al.(^{32}); Tkachenko et al.(^{33}); Van Wyk and Gericke(^{35})</td>
</tr>
<tr>
<td>Toothache</td>
<td>Leaves and rhizomes</td>
<td>South Africa and Zimbabwe</td>
<td>Van Wyk et al.(^{11}); Takawira-Nyenya(^{20}); Takawira-Nyenya and Stedje(^{29}); Buyun et al.(^{32}); Tkachenko et al.(^{33}); Van Wyk and Gericke(^{35}); Case(^{36})</td>
</tr>
<tr>
<td>Ulcers</td>
<td>Rhizome</td>
<td>South Africa and Zimbabwe</td>
<td>Van Wyk et al.(^{11}); Takawira-Nyenya(^{20}); Buyun et al.(^{32}); Tkachenko et al.(^{33}); Van Wyk and Gericke(^{35}); Case(^{36})</td>
</tr>
<tr>
<td>Venereal diseases</td>
<td>Leaves</td>
<td>South Africa</td>
<td>Hutchings et al.(^{31}); Van Vuuren and Naidoo(^{48})</td>
</tr>
<tr>
<td>Sores and wounds</td>
<td>Leaf sap and leaves</td>
<td>Botswana and Namibia</td>
<td>Takawira-Nyenya(^{20}); Hedberg and Staugard(^{30}); Buyun et al.(^{42}); Tkachenko et al.(^{33})</td>
</tr>
</tbody>
</table>

Figure 1. Medicinal uses of Sansevieria aethiopica
Biological activities of Sansevieria aethiopica

David and Afolayan found the amount of phenolics and flavonoids in the leaf extracts of *S. aethiopica* to be 19.1 to 57.1 mg tannic acid equivalent/gram and 5.9 to 7.2 mg quercetin equivalent/gram, respectively. The flavonoids and proanthocyanidins concentrations in the leaf extracts were 2.8 to 15.2 mg quercetin equivalent/gram and 1.4 to 14.5 mg catechin equivalent/gram, respectively. Van Wyk et al. argued that the value of *S. aethiopica* in treating haemorrhoids is due to the presence of various sapogenins, particularly ruscogenin. The following biological activities have been reported from the leaf and root extracts of *S. aethiopica*: antibacterial, antifungal, antioxidant, antiprotzoan, and cytotoxicity activities.

Antibacterial activities

Case evaluated antibacterial activities of 50% methanol and aqueous leaf extracts of *S. aethiopica* against *Staphylococcus aureus*, *Pseudomonas aeruginosa* and *Mycobacterium smegmatis* using a disk diffusion assay with ciprofloxacin as a positive control. The 50% methanol extract exhibited weak activities against *Staphylococcus aureus* and *Mycobacterium smegmatis* with zone of inhibition ranging from 1 mm to 4 mm against 9 mm exhibited by the control. Van Vuuren and Naidoo evaluated antibacterial activities of aqueous and a mixture of methanol and dichloromethane (1:1) leaf extracts of *S. aethiopica* against bacterial pathogens associated with urogenital or sexually transmitted infections which included *Gardnerella vaginalis*, *Neisseria gonorrhoeae*, *Oligella ureolytica* and *Ureaplasma urealyticum* using the micro-dilution technique with ciprofloxacin (0.01 mg/ml) as a positive control. The extracts exhibited activities with minimal inhibitory concentration (MIC) values ranging from 0.9 mg/ml to >16.0 mg/ml which were higher than 0.1 mg/ml exhibited by the control. David and Afolayan evaluated the synergistic effects of acetone, ethanol and methanolic leaf extracts of *S. aethiopica* against *Enterococcus faecalis* and *Enterococcus faecalis* using checkerboard macrodilution method and anti-biofilm activity was determined by semi-quantitative adherence assay. The extracts in combinations with gentamicin produced good inhibitory activities with MIC values ranging from 0.2 mg/ml to 0.4 mg/ml. The extracts reduced the pre-formed biofilm at varying degrees. Buyun et al. evaluated antibacterial activities of ethanolic leaf extracts of *S. aethiopica* against *Staphylococcus aureus* using agar disk diffusion assay. The extract exhibited zone of inhibition of 25 mm. David and Afolayan evaluated antibacterial activities of acetone leaf extracts of *S. aethiopica* against *Pseudomonas aeruginosa*, *Klebsiella pneumoniae*, *Enterobacter cloaca*, *Escherichia coli*, *Bacillus cereus*, *Bacillus pumilus* and *Staphylococcus aureus* using macrobroth dilution method. The extract exhibited activities against tested pathogens with MIC and minimum bacterial concentrations (MBC) values ranging from 0.4 mg/ml to 6.3 mg/ml. David and Afolayan evaluated antibacterial activities of acetone and methanol leaf extracts of *S. aethiopica* against *Pseudomonas aeruginosa*, *Klebsiella pneumoniae*, *Enterobacter cloaca*, *Escherichia coli*, *Bacillus cereus*, *Bacillus pumilus* and *Staphylococcus aureus* using macrobroth dilution method. The extracts exhibited activities against tested pathogens with MIC and MBC values ranging from 0.4 mg/ml to 6.3 mg/ml. Tkachenko et al. evaluated antibacterial activities of ethanolic leaf extracts of *S. aethiopica* against *Escherichia coli* using agar disk diffusion method. The extract exhibited activities with zone of inhibition of 13 mm.

Antifungal activities

Van Vuuren and Naidoo evaluated antifungal activities of aqueous and a mixture of methanol and dichloromethane (1:1) leaf extracts of *S. aethiopica* against fungal pathogen associated with urogenital or sexually transmitted infections, *Candida albicans* using the micro-dilution technique with amphotericin B (0.1 mg/ml) as a positive control. The aqueous and a mixture of methanol and dichloromethane (1:1) extracts exhibited activities with MIC values of 3.0 mg/ml and 2.0 mg/ml, respectively. David and Afolayan evaluated anti-candidal activities of acetone, ethanol and methanol leaf extracts of *S. aethiopica* against *Candida albicans* using microbroth dilution method with amphotericin B as a positive control. David and Afolayan also evaluated the structural changes of planktonic and sessile (biofilm) cells after treatment with the extracts using the electron microscope and determined the rate of killing of the test fungus by the extracts using the broth macrodilution technique. The extracts exhibited activities with the MIC, minimum biofilm eradication concentration (MBC) and minimal biofilm inhibitory concentration (MBIC) values ranging from 1.6 mg/ml to 25.0 mg/ml. Time-kill assays showed that the extracts inhibited the pathogen after 6 hours of exposure. Extract treated cells showed change in the morphology of the cells. David and Afolayan evaluated anti-candidal activities of acetone, ethanol and methanol leaf extracts of *S. aethiopica* against *Candida albicans* using microbroth dilution method with amphotericin B as a positive control, and evaluated structural changes in *Candida albicans* after treatment with the extracts using the electron microscope. The extracts exhibited activities with the MIC and minimum fungicidal concentrations (MFC) values ranging from 1.6 mg/ml to 6.3 mg/ml which were higher than MIC and MFC values of 0.008 mg/ml to 0.016 mg/ml exhibited by the control. The extract-treated cells showed alterations in the morphology which included wrinkled surfaces, shrinkages, tears and holes, proton pumping activity was lower in the treated fungi compared to the control and there was a decreased ergosterol content in the treated fungal cells when compared with the control. Therefore, the extracts inhibited growth and interfered with the sterol metabolism in *Candida albicans*. David et al. evaluated antifungal activities of acetone and methanol leaf extracts of *S. aethiopica* against *Absidia corymbifera*, *Aspergillus flavus*, *Aspergillus fumigatus*, *Aspergillus niger*, *Penicillium chalybeum* and *Penicillium expansum* using...
the poisoned food technique with amphotericin B as a positive control. The extracts exhibited activities with half maximal inhibitory concentration (IC₅₀) values ranging from 1.0 mg/ml to >10.00 mg/ml. The MIC and MFC ranged from 3.1 mg/ml to >25.00 mg/ml.³⁹

Antioxidant activities

David and Afolayan⁴² evaluated antioxidant activities of acetone leaf extracts of *S. aethiopica* using 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic-acid) (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydrogen peroxide (H₂O₂) and ferric reducing power (FRAP) assays. The ABTS radical scavenging activity of the extract was 82.0% which was comparable to 90.1% and 83.7% exhibited by the standard drugs butylated hydroxytoluene (BTH) and rutin, respectively. The extracts exhibited good DPPH dose-dependent activities. The acetone extract 0.4 mg/ml showed the highest level of scavenging ability against hydrogen peroxide exhibiting 66.8% which was comparable to 62.8% and 82.1% exhibited by the standard drugs BTH and rutin, respectively. The extract exhibited concentration dependent activities which were comparable to activities exhibited by the standard drugs, Vitamin C, Vitamin E and BHT.⁴³ David and Afolayan⁴⁴ evaluated antioxidant activities of acetone and methanol leaf extracts of *S. aethiopica* using ABTS, DPPH, H₂O₂ and FRAP assays. The ABTS radical scavenging activity of the extracts were 76.8% to 83.1% which were comparable to 95.0% and 87.5% exhibited by the standard drugs BTH and rutin, respectively. The extracts exhibited good DPPH dose-dependent activities. The acetone extract 0.8 mg/ml showed the highest level of scavenging ability against H₂O₂ exhibiting 62.9% to 66.8% which were comparable to 62.8% and 82.1% exhibited by the standard drugs BTH and rutin, respectively. The extract exhibited concentration dependent activities which were comparable to activities exhibited by the standard drugs, Vitamin C, Vitamin E and BHT.⁴⁴ Tkachenko et al.⁴⁵ evaluated the antioxidant activities of leaf extracts of *S. aethiopica* by assessing their *in vitro* effects against protein damage in equine erythrocytes using the carbonyl derivatives content of protein oxidative modification (OMP) assay. The extracts reduced the concentration of ketonic derivatives of OMP when compared to untreated erythrocytes by 12.7%.⁴⁷ Similarly, Tkachenko et al.⁴⁸ evaluated the antioxidant activities of leaf extracts of *S. aethiopica* by assessing the level of 2-thiobarbituric acid reactive substances (TBARS) as biomarkers of lipid peroxidation in equine erythrocyte suspension induced by treatment of the leaf extracts. The leaf extracts resulted in a significant increase of 36.6% of TBARS concentration in erythrocytes. These results suggest that *S. aethiopica* has a promising antioxidant and prooxidant potential.

AntipROTOzoan activities

Van Vuuren and Naidoo³⁴ evaluated antipROTOzoan activities of aequous and a mixture of methanol and dichloromethane (1:1) leaf extracts of *S. aethiopica* against protozoan pathogen associated with urogenital or sexually transmitted infections, *Trichomonas vaginalis* using the micro-dilution technique with ciprofloxacin (0.01 mg/ml) as a positive control. The aqueous and a mixture of methanol and dichloromethane (1:1) leaf extracts exhibited activities with MIC values of 1.3 mg/ml and 4.0 mg/ml which were higher than 0.1 mg/ml exhibited by the control.³⁴

Cytotoxicity activities

David and Afolayan⁴² evaluated cytotoxicity activities of acetone leaf extracts of *S. aethiopica* using the larvae of brine shrimp nauplii, *Artemia salina* L. The extract had lethal effects on the brine shrimp nauplii with the median lethal dose (LD₅₀) value of 3.2 ppm.⁴² Similarly, David and Afolayan⁴⁴ evaluated cytotoxicity activities of acetone and methanol leaf extracts of *S. aethiopica* using the larvae of brine shrimp nauplii, *Artemia salina* L. The acetone and methanol extracts had lethal effects on the brine shrimp nauplii with LD₅₀ values of 3.2 ppm and 3.7 ppm, respectively which were comparable to the median lethal concentration (LC₅₀) value of 1 ppm of the standard drug.⁴⁹

CONCLUSION

The present review summarizes the botany, ethnomedicinal uses and biological activities of the leaf sap, leaves, rhizomes and roots of *S. aethiopica*. From a chemical, pharmacological and toxicological point of view, *S. aethiopica* has not received any major emphasis. Currently, there is not yet enough data on ethnomopharmacological evaluations on the species that can be correlated with its medicinal applications. Therefore, detailed phytochemical, pharmacological and toxicological studies of *S. aethiopica* are recommended.

Conflict of interest

The author declares that he has no conflict of interest.

Acknowledgements

I would like to express my gratitude to the National Research Foundation (NRF), South Africa and Govan Mbeki Research and Development Centre (GMRDC), University of Fort Hare for financial support to conduct this study.

REFERENCES
