

Journal of Pharmaceutical Sciences and Research

www.jpsr.pharmainfo.in

Beer fermentation with different yeast concentration

Arsim Elshani ¹, Kastriot Pehlivani ^{2*}, Ismajl Cacaj ³, Ibrahim Hoxha ⁴, Nexhdet Shala ⁵

^{1, 3, 4, 5,} Department of Food Technology, University of "Haxhi Zeka", Peja-30 000, KOSOVO ^{2*} Brewery, Beer production, j.s.c. "Birra Peja", Peja-30 000, KOSOVO

Abstract

The study has been done with six different concentration of yeast. We can say that the yeast concentration has had the direct impact in the time of main fermentation where with rising the concentration was shorten the time i.e. is developed the faster process of fermentation.

The attenuation degree has been rised with the rising of yeast concentration and the samples 4, 5 and 6 have the higher degree of fermentation than samples 1, 2 and 3 where the yeast concentration is smaller.

Chemical analyses of final beer show that the highest degree of fermentation is reached at sample 5, where the apparent degree of fermentation

As for higher alcohols they differ in independent way from each other and while at propanol and isobutanol we have the light rising of values with the rise of yeast concentration, at isoamylalcohol occurs the opposite thing and have the small drop of values.

Key words: beer, fermentation, extract, yeast, concentration, cells, higher alcohols.

1 Introduction

The aim of this work is to study the influence of yeast concentration in fermentation [1, 5], in all its stages and the influence on forming the higher alcohols as important components of beer. The yeast concentration [1, 4] is important for reaching the desired fermentation parameters and the right concentration of higher alcohols as for the quality of beer in general [6].

2 METHODS AND MATERIAL

Technical equipment, production process and technological conditions in wort production department [4]:

- Pilsner malt [5], Scarlet type is used.
- Wet milling of malt, with water,
- Wort production with two decoctions [4]
- The same fermentation conditions for all samples.

Fermentation started at 12°C with original extract 13%, when reached the temperature 15°C is held for 48 h and then temperature is dropped to 1°C. During this time the extract dropped from 13% to 2% [16].

There were used six different concentration of yeast during fermentation [1]:

- Concentration of 15×10^6 cells/ml (sample 1).
- Concentration of 20 x 10⁶ cells/ml (sample 2).
- Concentration of 22 x 10⁶ cells/ml (sample 3).
- Concentration of 25×10^6 cells/ml (sample 4).
- 5. Concentration of 30 x 10⁶ cells/ml (sample 5).
- Concentration of 35 x 10⁶ cells/ml (sample 6).

Practical work was done in Birra Peja Brewery, in Peja, in production department and analyses were done in the laboratory of the brewery.

3 RESULTS AND DISCUSSION 45

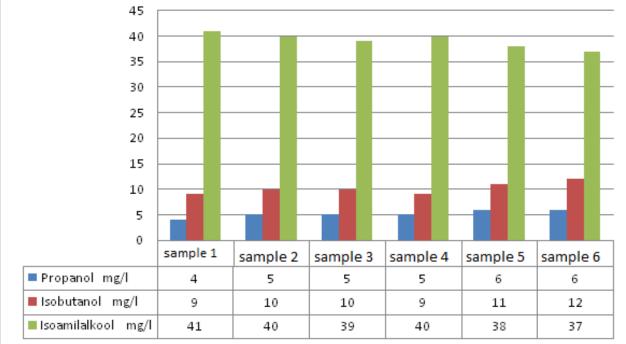


Figure 1. Higher alcohol values in beer with six different concentration of yeast.

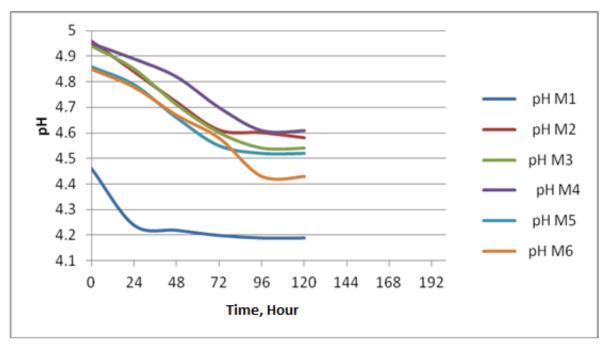


Figure 2. The change of pH value during the fermentation with different yeast concentration.

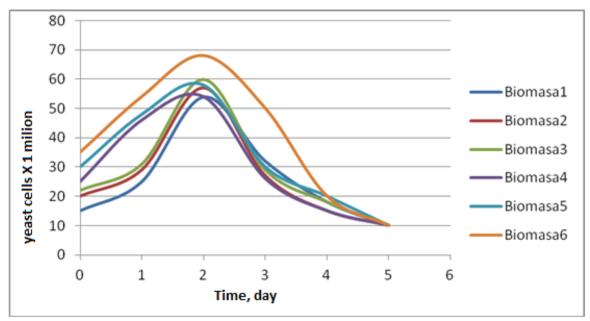


Figure 3. The biomass change with different yeast concentration.

From figure 1 one can see that the value of Propanol changed from 4 mg/l at sample 1 to 6mg/l at sample 6. Isobuatanol changed from 9 mg/l at sample1 to 12mg/l at sample6. In both cases there is a slight rise of values. But, at Isoamyl alcohol the value falls from 41mg/l at sample1 to 37mg/l at sample 6. The lowest value is given at sample 1, and the highest at sample 4. As one can see from the figure 3 the highest biomass of yeast is reached with the sample 6 where the highest pitching rate is and the biomass at other five samples is approximately the same.

4 CONCLUSIONS

We can conclude that the yeast concentration had a direct impact in fermentation time where with the rise if concentration was shorten the time, that means that has been developed faster fermentation process [10].

Regarding higher alcohols [11], they differ in independent way from each other and as propanol and isobutanol rises slightly with the rise of yeast concentration, isoamyl alcohol happened the opposite and the value falls slightly with the rise of yeast concentration.

Even there is difference in concentration of higher alcohols we should say that all the values are inside the limits of safety of product.

The rise of biomass is developed according to the yeast concentration and the sample 6, with the highest yeast concentration in the beginning has had the biggest rise of the biomass, and has gone to 70×10^6 cells/ml [11,12], while at other samples there is a smaller difference and lifts from 50 to 60 x 10^6 cells/ml.

REFERENCES:

Book reference:

- [1] Hough, j. (1962). Kontinual cultivation. Brewers' guard., 91.
- [2] J.s. hough, d.e. briggs. (1976). Malting and brewing science. London: Chapman and Hall ltd.
- [3] Kola, v. (2007). Teknologjia e prodhimit te birres. Tirane: Maluka, Tirane.
- [4] Kunze, w. (2004). Technology of brewing and malting. Berlin: VLB Berlin.

Reports:

- [1] European Brewery Convention; Analytica EBC. 2010.
- [2] European Brewery Convention; Manual of good practice; Vol. 6. Malting Technology.
- [3] European Brewery Convention; Manual of good practice; Vol.7, Fermentation and Maturation.
- [4] European Brewery Convention; Manual of good practice; Vol.9, Wort boiling and Clarification.
- [5] European Brewery Convention; Manual of good practice; Vol.11, Brewery Effluent.
- [6] European Brewery Convention; Manual of good practice; Vol.12, Quality.
- [7] MEBAK, Brautechnick Untersuchungsmethoden Bd.1, S.18-19
- [8] MEBAK, Brautechnische Analysemethoden. Band 2: Würze, Bier und Biermischgetränke.2002.
- [9] Maddox, i. A. (1970). J.inst. Brewing , 76.

Journal's references:

- [1] Herbert, d. (1961). Continuous culture of microorganisms. S.c.i. monograph, no 12., p.21.
- [2] Luedeking, r. (1967). Biochemical and biological engineering science, vol.1,. London: blakebrough,n. Academic press.
- [3] Elshani, Arsim, et al. "The Main Fermentation of Beer with Oxygen Concentration of 8 and 10 Mg/L." International Journal of Ecosystems and Ecology Science-IJEES 7.2 (2017): 337-342.
- [4] Arsim Elshani et al /J. Pharm. Sci. & Res. Vol. 10(5), 2018, 1229-1230