Synthesis and cytotoxic activities of substituted N-[(4-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-2-yl)phenyl]-N'-arylureas

V.S. Talismanov¹, S.V. Popkov², S.S. Zykova², O.G. Karmanova¹, S.A. Bondarenko¹

¹Moscow Institute of Physics and Technology
²Dmitry Mendeleev University of Chemical Technology of Russia
³Perm Penal Service Institute

2 Karpinskii street, Perm, 614042, Russian Federation

Abstract

Substituted N-[[4-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-2-yl]phenyl]-N'-arylureas were derived by condensation of aryl isocyanates with 2-substituted 2-(4-aminophenyl)-4-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolanes. The cytotoxic activity of some of the compounds was determined in three lines of tumor cells.

Keywords: adenocarcinoma, arylurea, anticancer activity, cytotoxicity, 1,3-dioxolane, fibroblast, myeloleukemia, 1,2,4-triazole, urea.

INTRODUCTION

Modern pharmacuetics has a number of successful and effective methods of treatment of a large number of malignant tumors, and now drugs with this type of active placed near 20 percent of top 200 of most selling drugs [1]. However, the low specificity of such drugs, the time-related resistance, and side effects complicate the use of known chemotherapeutic regimens [2-4]. Currently, in practical oncology there are several groups of drugs (taxanes, hydroxyurea derivatives), which main mode of action is due to the ability to disrupt the fission (mitosis) processes of tumor cells and induce their subsequent death [5]. Among other classes of compounds, active cytostatics have been found [6-29]. Molecular-biological mechanisms to provide the phenotype of multiple drug resistance of the tumor process have not been fully studied [5]. In this regard, the search for new effective compounds for the treatment of cancer is an urgent challenge.

Aryl ureas are promising targets for the search for anticancer drugs, since compounds have been found for which six mechanisms of cytotoxic activity have been studied [30]. Among the substituted 4-[(1,2,4-triazol-1-ylmethyl) -1,3-dioxolanes [31-37] and 2-aryl-1,3-dioxolanes containing fragments of substituted ureas in the molecule [38-41], compounds with a wide spectrum of biological activity have been found, but the antitumor activity of these series have not been studied and substituted 4-aminomethyl-1,3-dioxolanes containing fragments of substituted areyl urea have not been studied too. It should be noted that the derivatives of 1,3-dioxolane and 1,2,4-triazole have low toxicity [42, 43]. All of the above causes an interest in the search for cytotoxicity active compounds containing fragments of aryl urea, 1,3-dioxolane and 1,2,4-tetrazole.

MATERIALS AND METHODS

¹H NMR spectra were recorded on a Bruker AM-300 instrument (300.13 MHz). IR spectra were recorded on a Specord M-80 instrument (Nujol). The course of the reaction was monitored and the purity of the compounds was checked by TLC (Sorbfil A-UF). 2-(4-aminophenyl)-4-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolanes have been synthesized by the technique which is earlier developed by us [36].

Substituted N-[(4-methyl-4-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-2-yl)phenyl]-N'-arylureas (general procedure).

The 1.45 mmol of substituted arylosocyanates were added with stirring to a solution of 1.45 mmol of 2-(4-aminophenyl)-2-methyl-4-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolane in 3 ml of absolute acetonitrile. The mixture was held for 10–15 minutes, then the precipitated crystals were filtered off, washed with 10 ml of hexane, and air-dried. A product with a yield of 89–93% was derived.

N-[(4-methyl-4-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-2-yl)phenyl]-N'-chlorophenylurea (4). Yield 92%, m.p. 182-183 °C. NMR (CDCl₃, δ, ppm, δH): 1.55 (s, 3H, CH₃); 3.73 (dd, 1H, CH₂O, J = 7.4, 4.8); 3.88 (dd, 1H, CH₂O, J = 5.4, J = 8.4); 4.33 (q, 1H, CHO, J = 5.4); 4.89 (d, 2H, CH₂N, J = 6.4); 7.25-7.35 (m, 4H, C₆H₄N₃H); 7.4 (d, 2H, C₆H₅FCl, J = 8.6); 7.97 (d, 1H, C₆H₂H₅FCl, J = 2.2); 7.97 (s, 1H, C₆H₃triaz.); 8.52 (s, 1H, C₆H₃triaz.); 8.70 (brs, 1H, NH₃); 8.87 (brs, 1H, NH₃); IR (Nujol, vs¹): 1125; 1270 (βC₇H₄triaz.); 1245, 1190, 1085 (COCOC).
RESULTS AND DISCUSSION

The design of the target compounds included a preliminary computation of logP, since we previously showed that 4-(1,2,4-triazolyl-1-yl)-1,3-dioxolanes exhibit the greatest fungicidal activity in the range of logP of 3.0–4.0 [31, 32, 44], it has contributed to the choice of halogen and alkyl substituents in the structure of aryl isocyanates (Tab. 1).

The target compounds were obtained in high yields as a result of reaction of 2-(4-aminophenyl)-4-(1,2,4-triazolyl-1-yl)-1,3-dioxolanes with aryl isocyanates (Fig. 1).
Aryl ureas based on 2- (4-aminophenyl)-2-methyl-4-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolane and aryl isocyanates were synthesized in acetonitrile from which they precipitated in lines of healthy mouse fibroblasts L-929, which slightly decreased the yield of the product. The isolation of crystalline reactions were carried out in toluene, from which the desired pure form. 2-(4-Aminophenyl)-2-phenyl-4-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolane and aryl isocyanates leads to which slightly decreased the yield of the product.

The results of testing N-[4-[1-(2,4,6-triazolylmethyl)-1,3-dioxolan-2-yl]phenyl]-N'-arylureas are shown in Tab. 2.

CONCLUSIONS
The reaction of 2-substituted 2-(4-aminophenyl)-4-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolanes with aryl isocyanates leads to N-[4-[1-(2,4,6-triazolylmethyl)-1,3-dioxolan-2-yl] phenyl]-N'-aryl ureas with high yields. It has been found that cytotoxic activity is achieved at sufficiently low concentrations of the test substances, and cytotoxicity for healthy fibroblasts is lower than for tumor cells. This class of compounds is promising for further studies of cytotoxic activity.

ACKNOWLEDGEMENTS
We express our gratitude to Makarov V.A., A.N. Bach Institute of Biochemistry, Russian Academy of Sciences and Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie, Hans-Knöll-Institut (Germany) for biological testing of compounds.

REFERENCES
1. Smith D.T., Delost M.D., Qureshi H., Njarðarson J.T., Top 200 Pharmaceutical Products by Retail Sales in 2016 (http://njarðarson.lab.arizona.edu/sites/njarðarson.lab.arizona.edu/files).
45. ACD/Labs Release 2012 (File Version C10H41, Build 69045, 18 Feb 2014)